{"title":"射频肠吻合自冷电极的设计与评价","authors":"Wanli Yue, Haipo Cui, Chengli Song, Liangyong Tu, Jingcheng Lang, Wenhui Yan, Yingxi Lu","doi":"10.1115/1.4056008","DOIUrl":null,"url":null,"abstract":"\n Colorectal cancer is a common malignant tumor in the gastrointestinal tract. Resection of the cancerous site and anastomosis of the residual intestine is the preferred radical treatment for colorectal cancer. In particular, radiofrequency energy anastomosis of the residual intestine is being increasingly used in clinical practice. To improve the quality of anastomosis, reduce the thermal damage of tissue near the anastomosis area, and avoid foreign body residue in this area, we propose a self-cooling eversion-type radiofrequency-energy intestinal anastomosis electrode, which is analyzed through simulations and evaluated experimentally for welding intestinal tissue. For radiofrequency energy power of 160 W, anastomosis time of 13.2 s, and pressure of 154 kPa, the disconnected intestinal tissues can be anastomosed using the proposed electrode. The average burst pressure of the anastomotic orifice is 43.86 mmHg. During welding, the temperature of the normal saline at the outlet is 6.8 °C higher than that at the inlet, indicating that the use of circulating normal saline as the conductive and cooling medium can dissipate part of the heat generated by welding and reduce heat accumulation, thereby reducing thermal damage of biological tissue near the welding area. Overall, the proposed electrode may contribute to the recovery of postoperative intestinal function by enabling a novel strategy for clinical intestinal anastomosis induced by radiofrequency energy.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Evaluation of Self-Cooling Electrodes for Radiofrequency Intestinal Anastomosis\",\"authors\":\"Wanli Yue, Haipo Cui, Chengli Song, Liangyong Tu, Jingcheng Lang, Wenhui Yan, Yingxi Lu\",\"doi\":\"10.1115/1.4056008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Colorectal cancer is a common malignant tumor in the gastrointestinal tract. Resection of the cancerous site and anastomosis of the residual intestine is the preferred radical treatment for colorectal cancer. In particular, radiofrequency energy anastomosis of the residual intestine is being increasingly used in clinical practice. To improve the quality of anastomosis, reduce the thermal damage of tissue near the anastomosis area, and avoid foreign body residue in this area, we propose a self-cooling eversion-type radiofrequency-energy intestinal anastomosis electrode, which is analyzed through simulations and evaluated experimentally for welding intestinal tissue. For radiofrequency energy power of 160 W, anastomosis time of 13.2 s, and pressure of 154 kPa, the disconnected intestinal tissues can be anastomosed using the proposed electrode. The average burst pressure of the anastomotic orifice is 43.86 mmHg. During welding, the temperature of the normal saline at the outlet is 6.8 °C higher than that at the inlet, indicating that the use of circulating normal saline as the conductive and cooling medium can dissipate part of the heat generated by welding and reduce heat accumulation, thereby reducing thermal damage of biological tissue near the welding area. Overall, the proposed electrode may contribute to the recovery of postoperative intestinal function by enabling a novel strategy for clinical intestinal anastomosis induced by radiofrequency energy.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056008\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Design and Evaluation of Self-Cooling Electrodes for Radiofrequency Intestinal Anastomosis
Colorectal cancer is a common malignant tumor in the gastrointestinal tract. Resection of the cancerous site and anastomosis of the residual intestine is the preferred radical treatment for colorectal cancer. In particular, radiofrequency energy anastomosis of the residual intestine is being increasingly used in clinical practice. To improve the quality of anastomosis, reduce the thermal damage of tissue near the anastomosis area, and avoid foreign body residue in this area, we propose a self-cooling eversion-type radiofrequency-energy intestinal anastomosis electrode, which is analyzed through simulations and evaluated experimentally for welding intestinal tissue. For radiofrequency energy power of 160 W, anastomosis time of 13.2 s, and pressure of 154 kPa, the disconnected intestinal tissues can be anastomosed using the proposed electrode. The average burst pressure of the anastomotic orifice is 43.86 mmHg. During welding, the temperature of the normal saline at the outlet is 6.8 °C higher than that at the inlet, indicating that the use of circulating normal saline as the conductive and cooling medium can dissipate part of the heat generated by welding and reduce heat accumulation, thereby reducing thermal damage of biological tissue near the welding area. Overall, the proposed electrode may contribute to the recovery of postoperative intestinal function by enabling a novel strategy for clinical intestinal anastomosis induced by radiofrequency energy.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.