R. Arbon, Mohammed Mannan, Michael Psenka, Seyoon Ragavan
{"title":"一个三角形Ashbaugh-Benguria-Payne-Pólya-Weinberger不等式的证明","authors":"R. Arbon, Mohammed Mannan, Michael Psenka, Seyoon Ragavan","doi":"10.4171/JST/409","DOIUrl":null,"url":null,"abstract":"In this paper, we show that for all triangles in the plane, the equilateral triangle maximizes the ratio of the first two Dirichlet-Laplacian eigenvalues. This is an extension of work by Siudeja, who proved the inequality in the case of acute triangles. The proof utilizes inequalities due to Siudeja and Freitas, together with improved variational bounds.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A proof of the triangular Ashbaugh–Benguria–Payne–Pólya–Weinberger inequality\",\"authors\":\"R. Arbon, Mohammed Mannan, Michael Psenka, Seyoon Ragavan\",\"doi\":\"10.4171/JST/409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that for all triangles in the plane, the equilateral triangle maximizes the ratio of the first two Dirichlet-Laplacian eigenvalues. This is an extension of work by Siudeja, who proved the inequality in the case of acute triangles. The proof utilizes inequalities due to Siudeja and Freitas, together with improved variational bounds.\",\"PeriodicalId\":48789,\"journal\":{\"name\":\"Journal of Spectral Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spectral Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/JST/409\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JST/409","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A proof of the triangular Ashbaugh–Benguria–Payne–Pólya–Weinberger inequality
In this paper, we show that for all triangles in the plane, the equilateral triangle maximizes the ratio of the first two Dirichlet-Laplacian eigenvalues. This is an extension of work by Siudeja, who proved the inequality in the case of acute triangles. The proof utilizes inequalities due to Siudeja and Freitas, together with improved variational bounds.
期刊介绍:
The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome.
The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory.
Schrödinger operators, scattering theory and resonances;
eigenvalues: perturbation theory, asymptotics and inequalities;
quantum graphs, graph Laplacians;
pseudo-differential operators and semi-classical analysis;
random matrix theory;
the Anderson model and other random media;
non-self-adjoint matrices and operators, including Toeplitz operators;
spectral geometry, including manifolds and automorphic forms;
linear and nonlinear differential operators, especially those arising in geometry and physics;
orthogonal polynomials;
inverse problems.