D. Hue, F. Sartor, I. Petropoulos, Camille Fournis
{"title":"DPW-7:不同雷诺数下常用研究模型的稳态和非稳态计算","authors":"D. Hue, F. Sartor, I. Petropoulos, Camille Fournis","doi":"10.2514/1.c037231","DOIUrl":null,"url":null,"abstract":"This article presents the numerical computations performed at ONERA for the Seventh AIAA Drag Prediction Workshop. By introducing Reynolds numbers up to 30 million closer to the flight conditions, greater lift levels beyond the design point, and time-accurate simulations, this new session has allowed the previous studies to be extended. The Common Research Model aircraft configuration has been considered in its academic wing-body version and calculated in this work with point-matched structured grids. The ONERA Cassiopee software as well as the elsA solver and the FFDπ far-field drag code have been used. The grid convergence study has shown larger pressure drag variations than what was obtained at the cruise lift coefficient, but increasing the Reynolds number seems to reduce this trend. Then, the angle-of-attack sweep study with the lift, drag, and moment polars has given the opportunity to assess different numerical settings such as the Spalart–Allmaras and [Formula: see text] shear stress transport turbulence models with the quadratic constitutive relation approach (QCR-2000) and to discuss the comparison between computational fluid dynamics results and wind-tunnel data. Concerning the Reynolds number increase, it has appeared that the main part of drag reduction comes from the friction ([Formula: see text]) and viscous pressure drag ([Formula: see text]) components. The prediction of pitching moment increments due to Reynolds number variations still needs to be significantly improved. Finally, for an angle of attack above 4.00 deg, by the use of unsteady Reynolds-averaged Navier–Stokes computations, an unsteady buffet phenomenon has been observed and analyzed.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DPW-7: Steady and Unsteady Computations of the Common Research Model at Different Reynolds Numbers\",\"authors\":\"D. Hue, F. Sartor, I. Petropoulos, Camille Fournis\",\"doi\":\"10.2514/1.c037231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the numerical computations performed at ONERA for the Seventh AIAA Drag Prediction Workshop. By introducing Reynolds numbers up to 30 million closer to the flight conditions, greater lift levels beyond the design point, and time-accurate simulations, this new session has allowed the previous studies to be extended. The Common Research Model aircraft configuration has been considered in its academic wing-body version and calculated in this work with point-matched structured grids. The ONERA Cassiopee software as well as the elsA solver and the FFDπ far-field drag code have been used. The grid convergence study has shown larger pressure drag variations than what was obtained at the cruise lift coefficient, but increasing the Reynolds number seems to reduce this trend. Then, the angle-of-attack sweep study with the lift, drag, and moment polars has given the opportunity to assess different numerical settings such as the Spalart–Allmaras and [Formula: see text] shear stress transport turbulence models with the quadratic constitutive relation approach (QCR-2000) and to discuss the comparison between computational fluid dynamics results and wind-tunnel data. Concerning the Reynolds number increase, it has appeared that the main part of drag reduction comes from the friction ([Formula: see text]) and viscous pressure drag ([Formula: see text]) components. The prediction of pitching moment increments due to Reynolds number variations still needs to be significantly improved. Finally, for an angle of attack above 4.00 deg, by the use of unsteady Reynolds-averaged Navier–Stokes computations, an unsteady buffet phenomenon has been observed and analyzed.\",\"PeriodicalId\":14927,\"journal\":{\"name\":\"Journal of Aircraft\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aircraft\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.c037231\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.c037231","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
DPW-7: Steady and Unsteady Computations of the Common Research Model at Different Reynolds Numbers
This article presents the numerical computations performed at ONERA for the Seventh AIAA Drag Prediction Workshop. By introducing Reynolds numbers up to 30 million closer to the flight conditions, greater lift levels beyond the design point, and time-accurate simulations, this new session has allowed the previous studies to be extended. The Common Research Model aircraft configuration has been considered in its academic wing-body version and calculated in this work with point-matched structured grids. The ONERA Cassiopee software as well as the elsA solver and the FFDπ far-field drag code have been used. The grid convergence study has shown larger pressure drag variations than what was obtained at the cruise lift coefficient, but increasing the Reynolds number seems to reduce this trend. Then, the angle-of-attack sweep study with the lift, drag, and moment polars has given the opportunity to assess different numerical settings such as the Spalart–Allmaras and [Formula: see text] shear stress transport turbulence models with the quadratic constitutive relation approach (QCR-2000) and to discuss the comparison between computational fluid dynamics results and wind-tunnel data. Concerning the Reynolds number increase, it has appeared that the main part of drag reduction comes from the friction ([Formula: see text]) and viscous pressure drag ([Formula: see text]) components. The prediction of pitching moment increments due to Reynolds number variations still needs to be significantly improved. Finally, for an angle of attack above 4.00 deg, by the use of unsteady Reynolds-averaged Navier–Stokes computations, an unsteady buffet phenomenon has been observed and analyzed.
期刊介绍:
This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.