{"title":"Eierlegende-Wollmilchsau的概括","authors":"Paul Apisa, A. Wright","doi":"10.4310/cjm.2022.v10.n4.a4","DOIUrl":null,"url":null,"abstract":"We classify a natural collection of GL(2,R)-invariant subvarieties which includes loci of double covers as well as the orbits of the Eierlegende-Wollmilchsau, Ornithorynque, and Matheus-Yoccoz surfaces. This is motivated in part by a forthcoming application to another classification result, the classification of \"high rank\" invariant subvarieties. We also give new examples, which negatively resolve two questions of Mirzakhani and Wright, clarify the complex geometry of Teichmuller space, and illustrate new behavior relevant to the finite blocking problem.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalizations of the Eierlegende–Wollmilchsau\",\"authors\":\"Paul Apisa, A. Wright\",\"doi\":\"10.4310/cjm.2022.v10.n4.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify a natural collection of GL(2,R)-invariant subvarieties which includes loci of double covers as well as the orbits of the Eierlegende-Wollmilchsau, Ornithorynque, and Matheus-Yoccoz surfaces. This is motivated in part by a forthcoming application to another classification result, the classification of \\\"high rank\\\" invariant subvarieties. We also give new examples, which negatively resolve two questions of Mirzakhani and Wright, clarify the complex geometry of Teichmuller space, and illustrate new behavior relevant to the finite blocking problem.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2022.v10.n4.a4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2022.v10.n4.a4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We classify a natural collection of GL(2,R)-invariant subvarieties which includes loci of double covers as well as the orbits of the Eierlegende-Wollmilchsau, Ornithorynque, and Matheus-Yoccoz surfaces. This is motivated in part by a forthcoming application to another classification result, the classification of "high rank" invariant subvarieties. We also give new examples, which negatively resolve two questions of Mirzakhani and Wright, clarify the complex geometry of Teichmuller space, and illustrate new behavior relevant to the finite blocking problem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.