局部最终正算子半群

IF 0.7 4区 数学 Q2 MATHEMATICS
Sahiba Arora
{"title":"局部最终正算子半群","authors":"Sahiba Arora","doi":"10.7900/jot.2021jan26.2316","DOIUrl":null,"url":null,"abstract":"We initiate a theory of locally eventually positive operator semigroups on Banach lattices. Intuitively this means: given a positive initial datum, the solution of the corresponding Cauchy problem becomes (and stays) positive in a part of the domain, after a sufficiently large time. A drawback of the present theory of eventually positive C0-semigroups is that it is applicable only when the leading eigenvalue of the semigroup generator has a strongly positive eigenvector. We weaken this requirement and give sufficient criteria for individual and uniform local eventual positivity of the semigroup. This allows us to treat a larger class of examples by giving us more freedom on the domain when dealing with function spaces − for instance, the square of the Laplace operator with Dirichlet boundary conditions on L2 and the Dirichlet bi-Laplacian on Lp-spaces. Besides, we establish various spectral and convergence properties of locally eventually positive semigroups.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Locally eventually positive operator semigroups\",\"authors\":\"Sahiba Arora\",\"doi\":\"10.7900/jot.2021jan26.2316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate a theory of locally eventually positive operator semigroups on Banach lattices. Intuitively this means: given a positive initial datum, the solution of the corresponding Cauchy problem becomes (and stays) positive in a part of the domain, after a sufficiently large time. A drawback of the present theory of eventually positive C0-semigroups is that it is applicable only when the leading eigenvalue of the semigroup generator has a strongly positive eigenvector. We weaken this requirement and give sufficient criteria for individual and uniform local eventual positivity of the semigroup. This allows us to treat a larger class of examples by giving us more freedom on the domain when dealing with function spaces − for instance, the square of the Laplace operator with Dirichlet boundary conditions on L2 and the Dirichlet bi-Laplacian on Lp-spaces. Besides, we establish various spectral and convergence properties of locally eventually positive semigroups.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2021jan26.2316\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2021jan26.2316","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

摘要

我们在Banach格上提出了局部最终正算子半群的理论。直观地说,这意味着:给定一个正的初始数据,在足够长的时间后,相应柯西问题的解在域的一部分中变为(并保持)正。目前的最终正C0半群理论的一个缺点是,它只适用于半群生成器的前导特征值具有强正特征向量的情况。我们削弱了这一要求,并给出了半群的个体一致局部最终正性的充分条件。这允许我们在处理函数空间时,通过在域上给予我们更多的自由来处理更大类别的例子——例如,L2上具有狄利克雷边界条件的拉普拉斯算子的平方和Lp空间上的狄利克雷双拉普拉斯算子。此外,我们还建立了局部最终正半群的各种谱性质和收敛性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally eventually positive operator semigroups
We initiate a theory of locally eventually positive operator semigroups on Banach lattices. Intuitively this means: given a positive initial datum, the solution of the corresponding Cauchy problem becomes (and stays) positive in a part of the domain, after a sufficiently large time. A drawback of the present theory of eventually positive C0-semigroups is that it is applicable only when the leading eigenvalue of the semigroup generator has a strongly positive eigenvector. We weaken this requirement and give sufficient criteria for individual and uniform local eventual positivity of the semigroup. This allows us to treat a larger class of examples by giving us more freedom on the domain when dealing with function spaces − for instance, the square of the Laplace operator with Dirichlet boundary conditions on L2 and the Dirichlet bi-Laplacian on Lp-spaces. Besides, we establish various spectral and convergence properties of locally eventually positive semigroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信