{"title":"局部最终正算子半群","authors":"Sahiba Arora","doi":"10.7900/jot.2021jan26.2316","DOIUrl":null,"url":null,"abstract":"We initiate a theory of locally eventually positive operator semigroups on Banach lattices. Intuitively this means: given a positive initial datum, the solution of the corresponding Cauchy problem becomes (and stays) positive in a part of the domain, after a sufficiently large time. A drawback of the present theory of eventually positive C0-semigroups is that it is applicable only when the leading eigenvalue of the semigroup generator has a strongly positive eigenvector. We weaken this requirement and give sufficient criteria for individual and uniform local eventual positivity of the semigroup. This allows us to treat a larger class of examples by giving us more freedom on the domain when dealing with function spaces − for instance, the square of the Laplace operator with Dirichlet boundary conditions on L2 and the Dirichlet bi-Laplacian on Lp-spaces. Besides, we establish various spectral and convergence properties of locally eventually positive semigroups.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Locally eventually positive operator semigroups\",\"authors\":\"Sahiba Arora\",\"doi\":\"10.7900/jot.2021jan26.2316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We initiate a theory of locally eventually positive operator semigroups on Banach lattices. Intuitively this means: given a positive initial datum, the solution of the corresponding Cauchy problem becomes (and stays) positive in a part of the domain, after a sufficiently large time. A drawback of the present theory of eventually positive C0-semigroups is that it is applicable only when the leading eigenvalue of the semigroup generator has a strongly positive eigenvector. We weaken this requirement and give sufficient criteria for individual and uniform local eventual positivity of the semigroup. This allows us to treat a larger class of examples by giving us more freedom on the domain when dealing with function spaces − for instance, the square of the Laplace operator with Dirichlet boundary conditions on L2 and the Dirichlet bi-Laplacian on Lp-spaces. Besides, we establish various spectral and convergence properties of locally eventually positive semigroups.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2021jan26.2316\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2021jan26.2316","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We initiate a theory of locally eventually positive operator semigroups on Banach lattices. Intuitively this means: given a positive initial datum, the solution of the corresponding Cauchy problem becomes (and stays) positive in a part of the domain, after a sufficiently large time. A drawback of the present theory of eventually positive C0-semigroups is that it is applicable only when the leading eigenvalue of the semigroup generator has a strongly positive eigenvector. We weaken this requirement and give sufficient criteria for individual and uniform local eventual positivity of the semigroup. This allows us to treat a larger class of examples by giving us more freedom on the domain when dealing with function spaces − for instance, the square of the Laplace operator with Dirichlet boundary conditions on L2 and the Dirichlet bi-Laplacian on Lp-spaces. Besides, we establish various spectral and convergence properties of locally eventually positive semigroups.
期刊介绍:
The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.