{"title":"多元混合数据的随机效应模型:基于parafac的有限混合方法","authors":"M. Alfò, P. Giordani","doi":"10.1177/1471082X211037405","DOIUrl":null,"url":null,"abstract":"We discuss a flexible regression model for multivariate mixed responses. Dependence between outcomes is introduced via the joint distribution of discrete outcome- and individual-specific random effects that represent potential unobserved heterogeneity in each outcome profile. A different number of locations can be used for each margin, and the association structure is described by a tensor that can be further simplified by using the Parafac model. A case study illustrates the proposal.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":"22 1","pages":"46 - 66"},"PeriodicalIF":1.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random effect models for multivariate mixed data: A Parafac-based finite mixture approach\",\"authors\":\"M. Alfò, P. Giordani\",\"doi\":\"10.1177/1471082X211037405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a flexible regression model for multivariate mixed responses. Dependence between outcomes is introduced via the joint distribution of discrete outcome- and individual-specific random effects that represent potential unobserved heterogeneity in each outcome profile. A different number of locations can be used for each margin, and the association structure is described by a tensor that can be further simplified by using the Parafac model. A case study illustrates the proposal.\",\"PeriodicalId\":49476,\"journal\":{\"name\":\"Statistical Modelling\",\"volume\":\"22 1\",\"pages\":\"46 - 66\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082X211037405\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X211037405","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Random effect models for multivariate mixed data: A Parafac-based finite mixture approach
We discuss a flexible regression model for multivariate mixed responses. Dependence between outcomes is introduced via the joint distribution of discrete outcome- and individual-specific random effects that represent potential unobserved heterogeneity in each outcome profile. A different number of locations can be used for each margin, and the association structure is described by a tensor that can be further simplified by using the Parafac model. A case study illustrates the proposal.
期刊介绍:
The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.