关于弱哈代方法的否定结果

Pub Date : 2021-12-19 DOI:10.4064/cm8749-4-2022
P. Pasteczka
{"title":"关于弱哈代方法的否定结果","authors":"P. Pasteczka","doi":"10.4064/cm8749-4-2022","DOIUrl":null,"url":null,"abstract":". We establish the test which allows to show that a mean does not admit a weak-Hardy property. As a result we prove that Hardy and weak-Hardy properties are equivalent in the class of homogeneous, symmetric, repetition invariant, and Jensen concave mean on R + . More precisely, for every mean M : S ∞ n =1 R n + → R as above, the inequality M ( a 1 ) + M a 1 , a 2 ) + · · · < ∞ holds for all a ∈ ℓ 1 ( R + ) if and only if there exists a positive, real constant C (depending only on M ) such that ) for every sequence a ∈ ℓ 1 ( R + ) .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On negative results concerning weak-Hardy means\",\"authors\":\"P. Pasteczka\",\"doi\":\"10.4064/cm8749-4-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We establish the test which allows to show that a mean does not admit a weak-Hardy property. As a result we prove that Hardy and weak-Hardy properties are equivalent in the class of homogeneous, symmetric, repetition invariant, and Jensen concave mean on R + . More precisely, for every mean M : S ∞ n =1 R n + → R as above, the inequality M ( a 1 ) + M a 1 , a 2 ) + · · · < ∞ holds for all a ∈ ℓ 1 ( R + ) if and only if there exists a positive, real constant C (depending only on M ) such that ) for every sequence a ∈ ℓ 1 ( R + ) .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/cm8749-4-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8749-4-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

.我们建立了一个检验,它允许证明一个均值不允许弱Hardy性质。结果证明了在R+上的齐次、对称、重复不变量和Jensen凹均值类中,Hardy性质和弱Hardy性质是等价的。更精确地说,对于每个均值M:S∞n=1Rn+→ 如上所述,不等式M(a1)+M1,a2)+··<∞对所有a∈ℓ 1(R+)当且仅当存在一个正实常数C(仅取决于M)使得)对于每个序列a∈ℓ 1(R+)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On negative results concerning weak-Hardy means
. We establish the test which allows to show that a mean does not admit a weak-Hardy property. As a result we prove that Hardy and weak-Hardy properties are equivalent in the class of homogeneous, symmetric, repetition invariant, and Jensen concave mean on R + . More precisely, for every mean M : S ∞ n =1 R n + → R as above, the inequality M ( a 1 ) + M a 1 , a 2 ) + · · · < ∞ holds for all a ∈ ℓ 1 ( R + ) if and only if there exists a positive, real constant C (depending only on M ) such that ) for every sequence a ∈ ℓ 1 ( R + ) .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信