注意在切片整个函数的合成方向上$L$-索引的有界性

Q3 Mathematics
V. Baksa, Andriy Ivanovych Bandura, T. Salo, O. Skaskiv
{"title":"注意在切片整个函数的合成方向上$L$-索引的有界性","authors":"V. Baksa, Andriy Ivanovych Bandura, T. Salo, O. Skaskiv","doi":"10.30970/ms.58.1.58-68","DOIUrl":null,"url":null,"abstract":"We study a composition of two functions belonging to a class of slice holomorphic functions in the whole $n$-dimensional complex space. The slice holomorphy in the space means that for some fixed direction $\\mathbf{b}\\in\\mathbb{C}^n\\setminus\\{\\mathbf{0}\\}$ and for every point $z^0\\in\\mathbb{C}^n$ the function is holomorphic on its restriction on the slice $\\{z^0+t\\mathbf{b}: t\\in\\mathbb{C}\\}.$ An additional assumption on joint continuity for these functions allows to construct an analog of theory of entire functions having bounded index. The analog is applicable to study properties of slice holomorphic solutions of directional differential equations, describe local behavior and value distribution.In particular, we found conditions providing boundedness of $L$-index in the direction $\\mathbf{b}$ for a function $f(\\underbrace{\\Phi(z),\\ldots,\\Phi(z)}_{m\\text{ times}}),$where $f: \\mathbb{C}^n\\to\\mathbb{C}$ is a slice entire function, $\\Phi: \\mathbb{C}^n\\to\\mathbb{C}$ is a slice entire function,${L}: \\mathbb{C}^n\\to\\mathbb{R}_+$ is a continuous function.The obtained results are also new in one-dimensional case, i.e. for $n=1,$ $m=1.$ They are deduced using new approach in this area analog of logarithmic criterion.For a class of nonvanishing outer functions in the composition the sufficient conditions obtained by logarithmic criterion are weaker than the conditions by the Hayman theorem.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Note on boundedness of the $L$-index in the direction of the composition of slice entire functions\",\"authors\":\"V. Baksa, Andriy Ivanovych Bandura, T. Salo, O. Skaskiv\",\"doi\":\"10.30970/ms.58.1.58-68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a composition of two functions belonging to a class of slice holomorphic functions in the whole $n$-dimensional complex space. The slice holomorphy in the space means that for some fixed direction $\\\\mathbf{b}\\\\in\\\\mathbb{C}^n\\\\setminus\\\\{\\\\mathbf{0}\\\\}$ and for every point $z^0\\\\in\\\\mathbb{C}^n$ the function is holomorphic on its restriction on the slice $\\\\{z^0+t\\\\mathbf{b}: t\\\\in\\\\mathbb{C}\\\\}.$ An additional assumption on joint continuity for these functions allows to construct an analog of theory of entire functions having bounded index. The analog is applicable to study properties of slice holomorphic solutions of directional differential equations, describe local behavior and value distribution.In particular, we found conditions providing boundedness of $L$-index in the direction $\\\\mathbf{b}$ for a function $f(\\\\underbrace{\\\\Phi(z),\\\\ldots,\\\\Phi(z)}_{m\\\\text{ times}}),$where $f: \\\\mathbb{C}^n\\\\to\\\\mathbb{C}$ is a slice entire function, $\\\\Phi: \\\\mathbb{C}^n\\\\to\\\\mathbb{C}$ is a slice entire function,${L}: \\\\mathbb{C}^n\\\\to\\\\mathbb{R}_+$ is a continuous function.The obtained results are also new in one-dimensional case, i.e. for $n=1,$ $m=1.$ They are deduced using new approach in this area analog of logarithmic criterion.For a class of nonvanishing outer functions in the composition the sufficient conditions obtained by logarithmic criterion are weaker than the conditions by the Hayman theorem.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.58.1.58-68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.1.58-68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

研究了整个n维复空间中属于一类片全纯函数的两个函数的复合。空间中的片全纯意味着对于某个固定的方向$\mathbf{b}\在\mathbb{C}^n\setminus\ \mathbf{0}\}$以及对于\mathbb{C}^n$中的每一个点$z^0\,函数在片$\{z^0+t\mathbf{b}: t\在\mathbb{C}\}上是全纯的。对于这些函数的联合连续性的一个附加假设允许构造一个具有有界指标的整个函数理论的类比。该类比适用于研究方向微分方程的片全纯解的性质,描述局部行为和值分布。特别地,我们发现了函数$f(\underbrace{\Phi(z),\ldots,\Phi(z)}_{m\text{times}}) $L$-index在$\mathbf{b}$方向上具有有界性的条件,其中$f: \mathbb{C}^n\到\mathbb{C}$是一个切片完整函数,$ \Phi: \mathbb{C}^n\到\mathbb{C}$是一个切片完整函数,${L}: \mathbb{C}^n\到\mathbb{R}_+$是一个连续函数。所得结果在一维情况下也是新的,即对于$n=1,$ $m=1。它们是用类似对数准则的新方法推导出来的。对于复合中的一类非消失外函数,用对数判据得到的充分条件比用海曼定理得到的条件弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on boundedness of the $L$-index in the direction of the composition of slice entire functions
We study a composition of two functions belonging to a class of slice holomorphic functions in the whole $n$-dimensional complex space. The slice holomorphy in the space means that for some fixed direction $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$ and for every point $z^0\in\mathbb{C}^n$ the function is holomorphic on its restriction on the slice $\{z^0+t\mathbf{b}: t\in\mathbb{C}\}.$ An additional assumption on joint continuity for these functions allows to construct an analog of theory of entire functions having bounded index. The analog is applicable to study properties of slice holomorphic solutions of directional differential equations, describe local behavior and value distribution.In particular, we found conditions providing boundedness of $L$-index in the direction $\mathbf{b}$ for a function $f(\underbrace{\Phi(z),\ldots,\Phi(z)}_{m\text{ times}}),$where $f: \mathbb{C}^n\to\mathbb{C}$ is a slice entire function, $\Phi: \mathbb{C}^n\to\mathbb{C}$ is a slice entire function,${L}: \mathbb{C}^n\to\mathbb{R}_+$ is a continuous function.The obtained results are also new in one-dimensional case, i.e. for $n=1,$ $m=1.$ They are deduced using new approach in this area analog of logarithmic criterion.For a class of nonvanishing outer functions in the composition the sufficient conditions obtained by logarithmic criterion are weaker than the conditions by the Hayman theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信