{"title":"抛物槽轮模和滤波Kronecker模","authors":"Sanjay Amrutiya, U. Dubey","doi":"10.1215/21562261-10428418","DOIUrl":null,"url":null,"abstract":"We give functorial moduli construction of pure parabolic sheaves, in the sense of Alvarez-Consul and A. King, using the moduli of filtered Kronecker modules which we introduced in our earlier work. We also use a version of S. G. Langton's result due to K. Yokogawa to deduce the projectivity of moduli of parabolic sheaves. As an application of functorial moduli construction, we can get the morphisms at the level of moduli stacks.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moduli of parabolic sheaves and filtered Kronecker modules\",\"authors\":\"Sanjay Amrutiya, U. Dubey\",\"doi\":\"10.1215/21562261-10428418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give functorial moduli construction of pure parabolic sheaves, in the sense of Alvarez-Consul and A. King, using the moduli of filtered Kronecker modules which we introduced in our earlier work. We also use a version of S. G. Langton's result due to K. Yokogawa to deduce the projectivity of moduli of parabolic sheaves. As an application of functorial moduli construction, we can get the morphisms at the level of moduli stacks.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-10428418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-10428418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Moduli of parabolic sheaves and filtered Kronecker modules
We give functorial moduli construction of pure parabolic sheaves, in the sense of Alvarez-Consul and A. King, using the moduli of filtered Kronecker modules which we introduced in our earlier work. We also use a version of S. G. Langton's result due to K. Yokogawa to deduce the projectivity of moduli of parabolic sheaves. As an application of functorial moduli construction, we can get the morphisms at the level of moduli stacks.