{"title":"抛物槽轮模和滤波Kronecker模","authors":"Sanjay Amrutiya, U. Dubey","doi":"10.1215/21562261-10428418","DOIUrl":null,"url":null,"abstract":"We give functorial moduli construction of pure parabolic sheaves, in the sense of Alvarez-Consul and A. King, using the moduli of filtered Kronecker modules which we introduced in our earlier work. We also use a version of S. G. Langton's result due to K. Yokogawa to deduce the projectivity of moduli of parabolic sheaves. As an application of functorial moduli construction, we can get the morphisms at the level of moduli stacks.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moduli of parabolic sheaves and filtered Kronecker modules\",\"authors\":\"Sanjay Amrutiya, U. Dubey\",\"doi\":\"10.1215/21562261-10428418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give functorial moduli construction of pure parabolic sheaves, in the sense of Alvarez-Consul and A. King, using the moduli of filtered Kronecker modules which we introduced in our earlier work. We also use a version of S. G. Langton's result due to K. Yokogawa to deduce the projectivity of moduli of parabolic sheaves. As an application of functorial moduli construction, we can get the morphisms at the level of moduli stacks.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-10428418\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-10428418","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Moduli of parabolic sheaves and filtered Kronecker modules
We give functorial moduli construction of pure parabolic sheaves, in the sense of Alvarez-Consul and A. King, using the moduli of filtered Kronecker modules which we introduced in our earlier work. We also use a version of S. G. Langton's result due to K. Yokogawa to deduce the projectivity of moduli of parabolic sheaves. As an application of functorial moduli construction, we can get the morphisms at the level of moduli stacks.
期刊介绍:
The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.