抛物槽轮模和滤波Kronecker模

Pub Date : 2020-05-03 DOI:10.1215/21562261-10428418
Sanjay Amrutiya, U. Dubey
{"title":"抛物槽轮模和滤波Kronecker模","authors":"Sanjay Amrutiya, U. Dubey","doi":"10.1215/21562261-10428418","DOIUrl":null,"url":null,"abstract":"We give functorial moduli construction of pure parabolic sheaves, in the sense of Alvarez-Consul and A. King, using the moduli of filtered Kronecker modules which we introduced in our earlier work. We also use a version of S. G. Langton's result due to K. Yokogawa to deduce the projectivity of moduli of parabolic sheaves. As an application of functorial moduli construction, we can get the morphisms at the level of moduli stacks.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moduli of parabolic sheaves and filtered Kronecker modules\",\"authors\":\"Sanjay Amrutiya, U. Dubey\",\"doi\":\"10.1215/21562261-10428418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give functorial moduli construction of pure parabolic sheaves, in the sense of Alvarez-Consul and A. King, using the moduli of filtered Kronecker modules which we introduced in our earlier work. We also use a version of S. G. Langton's result due to K. Yokogawa to deduce the projectivity of moduli of parabolic sheaves. As an application of functorial moduli construction, we can get the morphisms at the level of moduli stacks.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-10428418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-10428418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用我们在早期工作中引入的滤波Kronecker模的模,我们给出了Alvarez Consul和A.King意义上的纯抛物槽轮的函数模构造。我们还使用S.G.Langton的K.Yokogawa结果的一个版本来推导抛物线槽轮模量的投影率。作为函数模构造的一个应用,我们可以得到模栈层次上的态射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Moduli of parabolic sheaves and filtered Kronecker modules
We give functorial moduli construction of pure parabolic sheaves, in the sense of Alvarez-Consul and A. King, using the moduli of filtered Kronecker modules which we introduced in our earlier work. We also use a version of S. G. Langton's result due to K. Yokogawa to deduce the projectivity of moduli of parabolic sheaves. As an application of functorial moduli construction, we can get the morphisms at the level of moduli stacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信