Andrasfai图的自同构群

IF 1 Q1 MATHEMATICS
S. Mirafzal
{"title":"Andrasfai图的自同构群","authors":"S. Mirafzal","doi":"10.47443/dml.2022.016","DOIUrl":null,"url":null,"abstract":"c © 2022 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/). Abstract For n = 3k−1, denote by Zn the additive group of integers modulo n, where k is an integer greater than 1. Let C be the subset of Zn consisting of the elements congruent to 1 modulo 3. The Andrásfai graph And(k) is the Cayley graph Cay(Zn;C). In this note, it is shown that the automorphism group of the graph And(k) is isomorphic to the dihedral group of order 2n.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The automorphism group of the Andrasfai graph\",\"authors\":\"S. Mirafzal\",\"doi\":\"10.47443/dml.2022.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"c © 2022 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/). Abstract For n = 3k−1, denote by Zn the additive group of integers modulo n, where k is an integer greater than 1. Let C be the subset of Zn consisting of the elements congruent to 1 modulo 3. The Andrásfai graph And(k) is the Cayley graph Cay(Zn;C). In this note, it is shown that the automorphism group of the graph And(k) is isomorphic to the dihedral group of order 2n.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

c©2022作者。这是一篇基于CC BY(国际4.0)许可证(www.creativommons.org/licenses/BY/4.0/)的开放访问文章。摘要对于n=3k−1,用Zn表示模n的整数的加法组,其中k是大于1的整数。设C是Zn的子集,由与1模3全等的元素组成。Andrásfai图And(k)是Cayley图Cay(Zn;C)。本文证明了图And(k)的自同构群同构于2n阶的二面体群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The automorphism group of the Andrasfai graph
c © 2022 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/). Abstract For n = 3k−1, denote by Zn the additive group of integers modulo n, where k is an integer greater than 1. Let C be the subset of Zn consisting of the elements congruent to 1 modulo 3. The Andrásfai graph And(k) is the Cayley graph Cay(Zn;C). In this note, it is shown that the automorphism group of the graph And(k) is isomorphic to the dihedral group of order 2n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信