Bloch函数和Bekolle-Bonami权值

IF 1.2 2区 数学 Q1 MATHEMATICS
Adem Limani, A. Nicolau
{"title":"Bloch函数和Bekolle-Bonami权值","authors":"Adem Limani, A. Nicolau","doi":"10.1512/iumj.2023.72.9279","DOIUrl":null,"url":null,"abstract":"We study analogues of well-known relationships between Muckenhoupt weights and $BMO$ in the setting of Bekolle-Bonami weights. For Bekolle-Bonami weights of bounded hyperbolic oscillation, we provide distance formulas of Garnett and Jones-type, in the context of $BMO$ on the unit disc and hyperbolic Lipschitz functions. This leads to a characterization of all weights in this class, for which any power of the weight is a Bekolle-Bonami weight, which in particular reveals an intimate connection between Bekolle-Bonami weights and Bloch functions. On the open problem of characterizing the closure of bounded analytic functions in the Bloch space, we provide a counter-example to a related recent conjecture. This shed light into the difficulty of preserving harmonicity in approximation problems in norms equivalent to the Bloch norm. Finally, we apply our results to study certain spectral properties of Cesaro operators.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bloch functions and Bekolle-Bonami weights\",\"authors\":\"Adem Limani, A. Nicolau\",\"doi\":\"10.1512/iumj.2023.72.9279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study analogues of well-known relationships between Muckenhoupt weights and $BMO$ in the setting of Bekolle-Bonami weights. For Bekolle-Bonami weights of bounded hyperbolic oscillation, we provide distance formulas of Garnett and Jones-type, in the context of $BMO$ on the unit disc and hyperbolic Lipschitz functions. This leads to a characterization of all weights in this class, for which any power of the weight is a Bekolle-Bonami weight, which in particular reveals an intimate connection between Bekolle-Bonami weights and Bloch functions. On the open problem of characterizing the closure of bounded analytic functions in the Bloch space, we provide a counter-example to a related recent conjecture. This shed light into the difficulty of preserving harmonicity in approximation problems in norms equivalent to the Bloch norm. Finally, we apply our results to study certain spectral properties of Cesaro operators.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9279\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9279","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了在Bekolle-Bonami权重设置中Muckenhoupt权重和$BMO$之间众所周知的关系的类似物。对于有界双曲振荡的Bekolle-Bonami权,我们在单位圆盘上的$BMO$和双曲Lipschitz函数的背景下,给出了Garnett和Jones型的距离公式。这导致了该类中所有权重的特征化,其中权重的任何幂都是Bekolle-Bonami权重,这特别揭示了Bekolle-Ponami权重和Bloch函数之间的密切联系。关于Bloch空间中有界解析函数闭包的刻画这一开放问题,我们提供了一个反例来证明最近的一个猜想。这揭示了在等价于Bloch范数的范数中的近似问题中保持调和性的困难。最后,我们将我们的结果应用于Cesaro算子的某些谱性质的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bloch functions and Bekolle-Bonami weights
We study analogues of well-known relationships between Muckenhoupt weights and $BMO$ in the setting of Bekolle-Bonami weights. For Bekolle-Bonami weights of bounded hyperbolic oscillation, we provide distance formulas of Garnett and Jones-type, in the context of $BMO$ on the unit disc and hyperbolic Lipschitz functions. This leads to a characterization of all weights in this class, for which any power of the weight is a Bekolle-Bonami weight, which in particular reveals an intimate connection between Bekolle-Bonami weights and Bloch functions. On the open problem of characterizing the closure of bounded analytic functions in the Bloch space, we provide a counter-example to a related recent conjecture. This shed light into the difficulty of preserving harmonicity in approximation problems in norms equivalent to the Bloch norm. Finally, we apply our results to study certain spectral properties of Cesaro operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信