{"title":"投影签名双模网络","authors":"David Schoch","doi":"10.1080/0022250x.2019.1711376","DOIUrl":null,"url":null,"abstract":"ABSTRACT Signed two-mode networks have so far predominantly been analyzed using blockmodeling techniques. In this work, we put forward the idea of projecting such networks onto its modes. Two projection methods are introduced which allow the application of known dichotomization tool for weighted networks to obtain a simple signed network. It turns out, however, that resulting networks may contain ambivalent ties, defined as conjunctions of positive and negative ties. We show that this requires the reformulation of matrices related to the network and introduce the complex adjacency and Laplacian matrix. These matrices are used to prove some properties related to balance theory including ambivalence.","PeriodicalId":50139,"journal":{"name":"Journal of Mathematical Sociology","volume":"45 1","pages":"37 - 50"},"PeriodicalIF":1.3000,"publicationDate":"2020-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0022250x.2019.1711376","citationCount":"3","resultStr":"{\"title\":\"Projecting signed two-mode networks\",\"authors\":\"David Schoch\",\"doi\":\"10.1080/0022250x.2019.1711376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Signed two-mode networks have so far predominantly been analyzed using blockmodeling techniques. In this work, we put forward the idea of projecting such networks onto its modes. Two projection methods are introduced which allow the application of known dichotomization tool for weighted networks to obtain a simple signed network. It turns out, however, that resulting networks may contain ambivalent ties, defined as conjunctions of positive and negative ties. We show that this requires the reformulation of matrices related to the network and introduce the complex adjacency and Laplacian matrix. These matrices are used to prove some properties related to balance theory including ambivalence.\",\"PeriodicalId\":50139,\"journal\":{\"name\":\"Journal of Mathematical Sociology\",\"volume\":\"45 1\",\"pages\":\"37 - 50\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0022250x.2019.1711376\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Sociology\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/0022250x.2019.1711376\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Sociology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/0022250x.2019.1711376","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
ABSTRACT Signed two-mode networks have so far predominantly been analyzed using blockmodeling techniques. In this work, we put forward the idea of projecting such networks onto its modes. Two projection methods are introduced which allow the application of known dichotomization tool for weighted networks to obtain a simple signed network. It turns out, however, that resulting networks may contain ambivalent ties, defined as conjunctions of positive and negative ties. We show that this requires the reformulation of matrices related to the network and introduce the complex adjacency and Laplacian matrix. These matrices are used to prove some properties related to balance theory including ambivalence.
期刊介绍:
The goal of the Journal of Mathematical Sociology is to publish models and mathematical techniques that would likely be useful to professional sociologists. The Journal also welcomes papers of mutual interest to social scientists and other social and behavioral scientists, as well as papers by non-social scientists that may encourage fruitful connections between sociology and other disciplines. Reviews of new or developing areas of mathematics and mathematical modeling that may have significant applications in sociology will also be considered.
The Journal of Mathematical Sociology is published in association with the International Network for Social Network Analysis, the Japanese Association for Mathematical Sociology, the Mathematical Sociology Section of the American Sociological Association, and the Methodology Section of the American Sociological Association.