基于nurbs的双向功能梯度梁固有频率优化

IF 1.1 4区 工程技术 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
N. Kim, T. Huynh, Qui X. Lieu, Jaehong Lee
{"title":"基于nurbs的双向功能梯度梁固有频率优化","authors":"N. Kim, T. Huynh, Qui X. Lieu, Jaehong Lee","doi":"10.24423/AOM.2897","DOIUrl":null,"url":null,"abstract":"In this study, the nurbs-based isogeometric analysis is developed to optimize natural frequencies of bidirectional functionally graded (BFG) beams by tailoring their material distribution. One-dimensional Non-Uniform Rational B-Spline (NURBS) basis functions are utilized to construct the geometry of beam as well as approximate solutions, whereas the gradation of material property is represented by two-dimensional basis functions. To optimize the material composition, the spatial distribution of volume fractions of material constituents is defined using the higher order interpolation of volume fraction values that are specified at a finite number of control points. As an optimization algorithm, the differential evolution (DE) algorithm is employed to optimize the volume fraction distribution that maximizes each of the first three natural frequencies of BFG beams. A numerical analysis is performed on the examples of BFG beams with various boundary conditions and slenderness ratios. The obtained results are compared with the previously published results in order to show the accuracy and effectiveness of the present approach. The effects of number of elements, boundary conditions and slenderness ratios on the optimized natural frequencies of BFG beams are investigated.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"NURBS-based optimization of natural frequencies for bidirectional functionally graded beams\",\"authors\":\"N. Kim, T. Huynh, Qui X. Lieu, Jaehong Lee\",\"doi\":\"10.24423/AOM.2897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the nurbs-based isogeometric analysis is developed to optimize natural frequencies of bidirectional functionally graded (BFG) beams by tailoring their material distribution. One-dimensional Non-Uniform Rational B-Spline (NURBS) basis functions are utilized to construct the geometry of beam as well as approximate solutions, whereas the gradation of material property is represented by two-dimensional basis functions. To optimize the material composition, the spatial distribution of volume fractions of material constituents is defined using the higher order interpolation of volume fraction values that are specified at a finite number of control points. As an optimization algorithm, the differential evolution (DE) algorithm is employed to optimize the volume fraction distribution that maximizes each of the first three natural frequencies of BFG beams. A numerical analysis is performed on the examples of BFG beams with various boundary conditions and slenderness ratios. The obtained results are compared with the previously published results in order to show the accuracy and effectiveness of the present approach. The effects of number of elements, boundary conditions and slenderness ratios on the optimized natural frequencies of BFG beams are investigated.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.2897\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.2897","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 9

摘要

在本研究中,基于nurbs的等几何分析通过调整双向功能梯度(BFG)梁的材料分布来优化其固有频率。一维非均匀有理b样条(NURBS)基函数用于构造梁的几何形状和近似解,而材料性质的梯度则由二维基函数表示。为了优化材料组成,使用在有限数量控制点上指定的高阶体积分数值插值来定义材料成分体积分数的空间分布。作为一种优化算法,差分进化(DE)算法用于优化BFG光束的体积分数分布,使前三个固有频率都最大化。对具有不同边界条件和长细比的BFG梁实例进行了数值分析。将所得结果与已有的结果进行了比较,以证明本文方法的准确性和有效性。研究了单元数、边界条件和长细比对BFG梁优化固有频率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NURBS-based optimization of natural frequencies for bidirectional functionally graded beams
In this study, the nurbs-based isogeometric analysis is developed to optimize natural frequencies of bidirectional functionally graded (BFG) beams by tailoring their material distribution. One-dimensional Non-Uniform Rational B-Spline (NURBS) basis functions are utilized to construct the geometry of beam as well as approximate solutions, whereas the gradation of material property is represented by two-dimensional basis functions. To optimize the material composition, the spatial distribution of volume fractions of material constituents is defined using the higher order interpolation of volume fraction values that are specified at a finite number of control points. As an optimization algorithm, the differential evolution (DE) algorithm is employed to optimize the volume fraction distribution that maximizes each of the first three natural frequencies of BFG beams. A numerical analysis is performed on the examples of BFG beams with various boundary conditions and slenderness ratios. The obtained results are compared with the previously published results in order to show the accuracy and effectiveness of the present approach. The effects of number of elements, boundary conditions and slenderness ratios on the optimized natural frequencies of BFG beams are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Mechanics
Archives of Mechanics 工程技术-材料科学:表征与测试
CiteScore
1.40
自引率
12.50%
发文量
0
审稿时长
>12 weeks
期刊介绍: Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on: -mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities; -methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems; -dynamics of material systems; -fluid flows and interactions with solids. Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above. The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc. Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信