低纬度月总电子含量复合相关性

IF 3.4 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
D. Allen, D. Hodyss, V. Forsythe, S. McDonald
{"title":"低纬度月总电子含量复合相关性","authors":"D. Allen, D. Hodyss, V. Forsythe, S. McDonald","doi":"10.1051/swsc/2023005","DOIUrl":null,"url":null,"abstract":"Spatial correlations of total electron content (TEC) variability are compared among two SAMI3 model runs and Jet Propulsion Laboratory Global Ionospheric Maps (JPL/GIM). Individual monthly correlation maps are constructed with Equatorial reference points at 12 evenly spaced longitudes and 12 universal times. TEC composite correlations (TCCs) are then calculated by averaging the individual maps, shifted zonally to synchronize local time. The TCC structures are quantified using Gaussian fits in the zonal and meridional directions. A non-zero large-scale “base correlation” is found in all three datasets for 2014, a year with high solar activity. Higher base correlations generally occur in the SAMI3 runs than in JPL/GIM. The SAMI3 run driven with climatological neutral fields shows higher correlations than the run driven with neutrals from a Whole Atmosphere Community Climate Model and ionosphere extension (WACCM-X) simulation. Base correlation values strongly correlate with monthly F10.7 standard deviations. Empirical Orthogonal Function (EOF) analyses confirm the large-scale correlations are usually, although not always, related to solar forcing. Strong correlations between the Ap index and EOF modes are also observed, consistent with geomagnetic forcing of the TEC field. The width of the correlation structures are also examined, and these vary considerably with local time, month, and dataset. Off-Equator conjugate point correlations are also calculated from each dataset and variations with month and local time are analyzed. Analysis of TCCs for 2010, a year with low solar activity, shows that base correlations as well as correlations of the first EOF mode with F10.7 are generally weaker than in 2014.","PeriodicalId":17034,"journal":{"name":"Journal of Space Weather and Space Climate","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low latitude monthly total electron content composite correlations\",\"authors\":\"D. Allen, D. Hodyss, V. Forsythe, S. McDonald\",\"doi\":\"10.1051/swsc/2023005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial correlations of total electron content (TEC) variability are compared among two SAMI3 model runs and Jet Propulsion Laboratory Global Ionospheric Maps (JPL/GIM). Individual monthly correlation maps are constructed with Equatorial reference points at 12 evenly spaced longitudes and 12 universal times. TEC composite correlations (TCCs) are then calculated by averaging the individual maps, shifted zonally to synchronize local time. The TCC structures are quantified using Gaussian fits in the zonal and meridional directions. A non-zero large-scale “base correlation” is found in all three datasets for 2014, a year with high solar activity. Higher base correlations generally occur in the SAMI3 runs than in JPL/GIM. The SAMI3 run driven with climatological neutral fields shows higher correlations than the run driven with neutrals from a Whole Atmosphere Community Climate Model and ionosphere extension (WACCM-X) simulation. Base correlation values strongly correlate with monthly F10.7 standard deviations. Empirical Orthogonal Function (EOF) analyses confirm the large-scale correlations are usually, although not always, related to solar forcing. Strong correlations between the Ap index and EOF modes are also observed, consistent with geomagnetic forcing of the TEC field. The width of the correlation structures are also examined, and these vary considerably with local time, month, and dataset. Off-Equator conjugate point correlations are also calculated from each dataset and variations with month and local time are analyzed. Analysis of TCCs for 2010, a year with low solar activity, shows that base correlations as well as correlations of the first EOF mode with F10.7 are generally weaker than in 2014.\",\"PeriodicalId\":17034,\"journal\":{\"name\":\"Journal of Space Weather and Space Climate\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Space Weather and Space Climate\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/swsc/2023005\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/swsc/2023005","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

比较了两次SAMI3模型运行和喷气推进实验室全球电离层图(JPL/GIM)之间总电子含量(TEC)变化的空间相关性。利用赤道参考点在12个等距经度和12个世界时绘制了单独的月相关图。然后,通过对各个映射求平均值来计算TEC复合相关性(TCC),分区偏移以同步本地时间。TCC结构在纬向和经向上使用高斯拟合进行量化。在2014年的所有三个数据集中都发现了非零的大规模“基本相关性”,2014年是太阳活动频繁的一年。与JPL/GIM相比,SAMI3运行中通常会出现更高的基本相关性。由气候中性场驱动的SAMI3运行显示出比由全大气群落气候模型和电离层扩展(WACCM-X)模拟的中性场驱动运行更高的相关性。基本相关值与每月F10.7标准偏差密切相关。经验正交函数(EOF)分析证实,大规模相关性通常(尽管并非总是)与太阳强迫有关。Ap指数和EOF模式之间也有很强的相关性,这与TEC场的地磁强迫一致。还检查了相关结构的宽度,这些宽度随着当地时间、月份和数据集的不同而变化很大。还从每个数据集计算了离赤道共轭点相关性,并分析了随月份和当地时间的变化。2010年是太阳活动较低的一年,对TC的分析表明,基本相关性以及第一次EOF模式与F10.7的相关性通常比2014年弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low latitude monthly total electron content composite correlations
Spatial correlations of total electron content (TEC) variability are compared among two SAMI3 model runs and Jet Propulsion Laboratory Global Ionospheric Maps (JPL/GIM). Individual monthly correlation maps are constructed with Equatorial reference points at 12 evenly spaced longitudes and 12 universal times. TEC composite correlations (TCCs) are then calculated by averaging the individual maps, shifted zonally to synchronize local time. The TCC structures are quantified using Gaussian fits in the zonal and meridional directions. A non-zero large-scale “base correlation” is found in all three datasets for 2014, a year with high solar activity. Higher base correlations generally occur in the SAMI3 runs than in JPL/GIM. The SAMI3 run driven with climatological neutral fields shows higher correlations than the run driven with neutrals from a Whole Atmosphere Community Climate Model and ionosphere extension (WACCM-X) simulation. Base correlation values strongly correlate with monthly F10.7 standard deviations. Empirical Orthogonal Function (EOF) analyses confirm the large-scale correlations are usually, although not always, related to solar forcing. Strong correlations between the Ap index and EOF modes are also observed, consistent with geomagnetic forcing of the TEC field. The width of the correlation structures are also examined, and these vary considerably with local time, month, and dataset. Off-Equator conjugate point correlations are also calculated from each dataset and variations with month and local time are analyzed. Analysis of TCCs for 2010, a year with low solar activity, shows that base correlations as well as correlations of the first EOF mode with F10.7 are generally weaker than in 2014.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Space Weather and Space Climate
Journal of Space Weather and Space Climate ASTRONOMY & ASTROPHYSICS-GEOCHEMISTRY & GEOPHYSICS
CiteScore
6.90
自引率
6.10%
发文量
40
审稿时长
8 weeks
期刊介绍: The Journal of Space Weather and Space Climate (SWSC) is an international multi-disciplinary and interdisciplinary peer-reviewed open access journal which publishes papers on all aspects of space weather and space climate from a broad range of scientific and technical fields including solar physics, space plasma physics, aeronomy, planetology, radio science, geophysics, biology, medicine, astronautics, aeronautics, electrical engineering, meteorology, climatology, mathematics, economy, informatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信