{"title":"支持5G高容量通信的集成自由空间光学和光纤网络性能增强","authors":"Meshari Alsharari, Khaled Aliqab, Farman Ali, Ammar Armghan","doi":"10.1155/2023/8685686","DOIUrl":null,"url":null,"abstract":"In this paper, the integrated free-space optics (FSO) and fiber optic model is evaluated using new radio (NR) sub-THz link to sustain next generation 5G capacity. The proposed integrated model effectively applies over 25 km single mode fiber, 0.5 m RF wireless, and 500 m optical wireless. In addition, four different sub-THz frequencies (125, 150, 175, and 200 GHz) are estimated on NR-based 5G FSO network, including 22 Gbps 64quadrature amplitude modulation-orthogonal frequency division multiplexing (64QAM-OFDM) signal speed. The proposed FSO enabled fiber optic system is also measured mathematically to satisfy the data transmission accuracy. For confirmation, the theoretical approach of the presented FSO and fiber optic network is realized with an aggregate 342 Gbps speed \n \n \n \n 16\n ×\n 22\n \n \n \n . The performance metrics comprising forward error limit (FEL), bit error rate (BER), and error vector magnitude (EVM) are used for weighing simulation results. The outlets of an integrated fiber-FSO network show that by applying NR 5G sub-THz, a high data rate with multiple inputs and multiple outputs (MIMO) transmission capacity can be adjusted victoriously.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Integrated Free-Space Optics and Fiber Optic Network Performance Enhancement for Sustaining 5G High Capacity Communications\",\"authors\":\"Meshari Alsharari, Khaled Aliqab, Farman Ali, Ammar Armghan\",\"doi\":\"10.1155/2023/8685686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the integrated free-space optics (FSO) and fiber optic model is evaluated using new radio (NR) sub-THz link to sustain next generation 5G capacity. The proposed integrated model effectively applies over 25 km single mode fiber, 0.5 m RF wireless, and 500 m optical wireless. In addition, four different sub-THz frequencies (125, 150, 175, and 200 GHz) are estimated on NR-based 5G FSO network, including 22 Gbps 64quadrature amplitude modulation-orthogonal frequency division multiplexing (64QAM-OFDM) signal speed. The proposed FSO enabled fiber optic system is also measured mathematically to satisfy the data transmission accuracy. For confirmation, the theoretical approach of the presented FSO and fiber optic network is realized with an aggregate 342 Gbps speed \\n \\n \\n \\n 16\\n ×\\n 22\\n \\n \\n \\n . The performance metrics comprising forward error limit (FEL), bit error rate (BER), and error vector magnitude (EVM) are used for weighing simulation results. The outlets of an integrated fiber-FSO network show that by applying NR 5G sub-THz, a high data rate with multiple inputs and multiple outputs (MIMO) transmission capacity can be adjusted victoriously.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8685686\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/8685686","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Integrated Free-Space Optics and Fiber Optic Network Performance Enhancement for Sustaining 5G High Capacity Communications
In this paper, the integrated free-space optics (FSO) and fiber optic model is evaluated using new radio (NR) sub-THz link to sustain next generation 5G capacity. The proposed integrated model effectively applies over 25 km single mode fiber, 0.5 m RF wireless, and 500 m optical wireless. In addition, four different sub-THz frequencies (125, 150, 175, and 200 GHz) are estimated on NR-based 5G FSO network, including 22 Gbps 64quadrature amplitude modulation-orthogonal frequency division multiplexing (64QAM-OFDM) signal speed. The proposed FSO enabled fiber optic system is also measured mathematically to satisfy the data transmission accuracy. For confirmation, the theoretical approach of the presented FSO and fiber optic network is realized with an aggregate 342 Gbps speed
16
×
22
. The performance metrics comprising forward error limit (FEL), bit error rate (BER), and error vector magnitude (EVM) are used for weighing simulation results. The outlets of an integrated fiber-FSO network show that by applying NR 5G sub-THz, a high data rate with multiple inputs and multiple outputs (MIMO) transmission capacity can be adjusted victoriously.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.