各种物理鞍点问题的一般有限体积框架

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
K. Terekhov
{"title":"各种物理鞍点问题的一般有限体积框架","authors":"K. Terekhov","doi":"10.1515/rnam-2021-0029","DOIUrl":null,"url":null,"abstract":"Abstract This article is dedicated to the general finite-volume framework used to discretize and solve saddle-point problems of various physics. The framework applies the Ostrogradsky–Gauss theorem to transform a divergent part of the partial differential equation into a surface integral, approximated by the summation of vector fluxes over interfaces. The interface vector fluxes are reconstructed using the harmonic averaging point concept resulting in the unique vector flux even in a heterogeneous anisotropic medium. The vector flux is modified with the consideration of eigenvalues in matrix coefficients at vector unknowns to address both the hyperbolic and saddle-point problems, causing nonphysical oscillations and an inf-sup stability issue. We apply the framework to several problems of various physics, namely incompressible elasticity problem, incompressible Navier–Stokes, Brinkman–Hazen–Dupuit–Darcy, Biot, and Maxwell equations and explain several nuances of the application. Finally, we test the framework on simple analytical solutions.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":"36 1","pages":"359 - 379"},"PeriodicalIF":0.5000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"General finite-volume framework for saddle-point problems of various physics\",\"authors\":\"K. Terekhov\",\"doi\":\"10.1515/rnam-2021-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article is dedicated to the general finite-volume framework used to discretize and solve saddle-point problems of various physics. The framework applies the Ostrogradsky–Gauss theorem to transform a divergent part of the partial differential equation into a surface integral, approximated by the summation of vector fluxes over interfaces. The interface vector fluxes are reconstructed using the harmonic averaging point concept resulting in the unique vector flux even in a heterogeneous anisotropic medium. The vector flux is modified with the consideration of eigenvalues in matrix coefficients at vector unknowns to address both the hyperbolic and saddle-point problems, causing nonphysical oscillations and an inf-sup stability issue. We apply the framework to several problems of various physics, namely incompressible elasticity problem, incompressible Navier–Stokes, Brinkman–Hazen–Dupuit–Darcy, Biot, and Maxwell equations and explain several nuances of the application. Finally, we test the framework on simple analytical solutions.\",\"PeriodicalId\":49585,\"journal\":{\"name\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"volume\":\"36 1\",\"pages\":\"359 - 379\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2021-0029\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2021-0029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文研究了用于离散化和求解各种物理鞍点问题的一般有限体积框架。该框架应用Ostrogradsky-Gauss定理将偏微分方程的发散部分转化为表面积分,近似为界面上矢量通量的总和。利用谐波平均点的概念重构了界面矢量通量,即使在非均质各向异性介质中也能得到唯一的矢量通量。在矢量未知数处,考虑矩阵系数的特征值对矢量通量进行了修正,以解决双曲和鞍点问题,这些问题会引起非物理振荡和内支撑稳定性问题。我们将该框架应用于各种物理问题,即不可压缩弹性问题,不可压缩Navier-Stokes, Brinkman-Hazen-Dupuit-Darcy, Biot和Maxwell方程,并解释了应用中的几个细微差别。最后,我们在简单解析解上对框架进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General finite-volume framework for saddle-point problems of various physics
Abstract This article is dedicated to the general finite-volume framework used to discretize and solve saddle-point problems of various physics. The framework applies the Ostrogradsky–Gauss theorem to transform a divergent part of the partial differential equation into a surface integral, approximated by the summation of vector fluxes over interfaces. The interface vector fluxes are reconstructed using the harmonic averaging point concept resulting in the unique vector flux even in a heterogeneous anisotropic medium. The vector flux is modified with the consideration of eigenvalues in matrix coefficients at vector unknowns to address both the hyperbolic and saddle-point problems, causing nonphysical oscillations and an inf-sup stability issue. We apply the framework to several problems of various physics, namely incompressible elasticity problem, incompressible Navier–Stokes, Brinkman–Hazen–Dupuit–Darcy, Biot, and Maxwell equations and explain several nuances of the application. Finally, we test the framework on simple analytical solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信