特征共线分组的分类模型

IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
L. Bobrowski, Paweł Zabielski
{"title":"特征共线分组的分类模型","authors":"L. Bobrowski, Paweł Zabielski","doi":"10.1080/24751839.2022.2129133","DOIUrl":null,"url":null,"abstract":"ABSTRACT Pattern recognition procedures operate on data represented as sets of multidimensional feature vectors. A small sample of data appears when the dimension of the feature vectors (number of features) is much larger than the number of feature vectors (objects). Small datasets often emerge in practice, for example in genetics. The design of classification or prognostic models on small data sets requires the development of new types of methods. Methods based on L 1 geometry can play an important role in this regard.","PeriodicalId":32180,"journal":{"name":"Journal of Information and Telecommunication","volume":"7 1","pages":"73 - 88"},"PeriodicalIF":2.7000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification model with collinear grouping of features\",\"authors\":\"L. Bobrowski, Paweł Zabielski\",\"doi\":\"10.1080/24751839.2022.2129133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Pattern recognition procedures operate on data represented as sets of multidimensional feature vectors. A small sample of data appears when the dimension of the feature vectors (number of features) is much larger than the number of feature vectors (objects). Small datasets often emerge in practice, for example in genetics. The design of classification or prognostic models on small data sets requires the development of new types of methods. Methods based on L 1 geometry can play an important role in this regard.\",\"PeriodicalId\":32180,\"journal\":{\"name\":\"Journal of Information and Telecommunication\",\"volume\":\"7 1\",\"pages\":\"73 - 88\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24751839.2022.2129133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751839.2022.2129133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

模式识别过程对表示为多维特征向量集的数据进行操作。当特征向量的维度(特征数量)远大于特征向量(对象)的数量时,会出现小样本数据。小型数据集经常出现在实践中,例如遗传学中。在小数据集上设计分类或预测模型需要开发新型方法。基于L1几何的方法可以在这方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification model with collinear grouping of features
ABSTRACT Pattern recognition procedures operate on data represented as sets of multidimensional feature vectors. A small sample of data appears when the dimension of the feature vectors (number of features) is much larger than the number of feature vectors (objects). Small datasets often emerge in practice, for example in genetics. The design of classification or prognostic models on small data sets requires the development of new types of methods. Methods based on L 1 geometry can play an important role in this regard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信