k理论与商奇点的奇异范畴

IF 0.5 Q3 MATHEMATICS
Nebojsa Pavic, E. Shinder
{"title":"k理论与商奇点的奇异范畴","authors":"Nebojsa Pavic, E. Shinder","doi":"10.2140/akt.2021.6.381","DOIUrl":null,"url":null,"abstract":"In this paper we study Schlichting's K-theory groups of the Buchweitz-Orlov singularity category $\\mathcal{D}^{sg}(X)$ of a quasi-projective algebraic scheme $X/k$ with applications to Algebraic K-theory. We prove that for isolated quotient singularities $\\mathrm{K}_0(\\mathcal{D}^{sg}(X))$ is finite torsion, and that $\\mathrm{K}_1(\\mathcal{D}^{sg}(X)) = 0$. One of the main applications is that algebraic varieties with isolated quotient singularities satisfy rational Poincare duality on the level of the Grothendieck group; this allows computing the Grothendieck group of such varieties in terms of their resolution of singularities. Other applications concern the Grothendieck group of perfect complexes supported at a singular point and topological filtration on the Grothendieck groups.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"K-theory and the singularity category of\\nquotient singularities\",\"authors\":\"Nebojsa Pavic, E. Shinder\",\"doi\":\"10.2140/akt.2021.6.381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study Schlichting's K-theory groups of the Buchweitz-Orlov singularity category $\\\\mathcal{D}^{sg}(X)$ of a quasi-projective algebraic scheme $X/k$ with applications to Algebraic K-theory. We prove that for isolated quotient singularities $\\\\mathrm{K}_0(\\\\mathcal{D}^{sg}(X))$ is finite torsion, and that $\\\\mathrm{K}_1(\\\\mathcal{D}^{sg}(X)) = 0$. One of the main applications is that algebraic varieties with isolated quotient singularities satisfy rational Poincare duality on the level of the Grothendieck group; this allows computing the Grothendieck group of such varieties in terms of their resolution of singularities. Other applications concern the Grothendieck group of perfect complexes supported at a singular point and topological filtration on the Grothendieck groups.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2021.6.381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2021.6.381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

摘要

本文研究拟射精代数格式$X/k$的Buchweitz-Orlov奇异范畴$\mathcal{D}^{sg}(X)$的Schlichting k理论群及其在代数k理论中的应用。证明了对于孤立商奇点$\mathrm{K}_0(\mathcal{D}^{sg}(X))$是有限扭转,且$\mathrm{K}_1(\mathcal{D}^{sg}(X)) = 0$。其主要应用之一是在Grothendieck群的水平上,具有孤立商奇点的代数变体满足有理庞加莱对偶性;这样就可以根据奇点的分辨率来计算这些变种的格罗滕迪克群。其他的应用涉及奇异点支撑的完美配合物的Grothendieck群和Grothendieck群上的拓扑过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-theory and the singularity category of quotient singularities
In this paper we study Schlichting's K-theory groups of the Buchweitz-Orlov singularity category $\mathcal{D}^{sg}(X)$ of a quasi-projective algebraic scheme $X/k$ with applications to Algebraic K-theory. We prove that for isolated quotient singularities $\mathrm{K}_0(\mathcal{D}^{sg}(X))$ is finite torsion, and that $\mathrm{K}_1(\mathcal{D}^{sg}(X)) = 0$. One of the main applications is that algebraic varieties with isolated quotient singularities satisfy rational Poincare duality on the level of the Grothendieck group; this allows computing the Grothendieck group of such varieties in terms of their resolution of singularities. Other applications concern the Grothendieck group of perfect complexes supported at a singular point and topological filtration on the Grothendieck groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信