厄米巴拿赫代数的算子不等式

Pub Date : 2020-03-12 DOI:10.7146/math.scand.a-115624
H. Najafi
{"title":"厄米巴拿赫代数的算子不等式","authors":"H. Najafi","doi":"10.7146/math.scand.a-115624","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the Kubo-Ando theory from operator means on C∗-algebras to a Hermitian Banach ∗-algebra A with a continuous involution. For this purpose, we show that if a and b are self-adjoint elements in A with spectra in an interval J such that a≤b, then f(a)≤f(b) for every operator monotone function f on J, where f(a) and f(b) are defined by the Riesz-Dunford integral. Moreover, we show that some convexity properties of the usual operator convex functions are preserved in the setting of Hermitian Banach ∗-algebras. In particular, Jensen's operator inequality is presented in these cases.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some operator inequalities for Hermitian Banach $*$-algebras\",\"authors\":\"H. Najafi\",\"doi\":\"10.7146/math.scand.a-115624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the Kubo-Ando theory from operator means on C∗-algebras to a Hermitian Banach ∗-algebra A with a continuous involution. For this purpose, we show that if a and b are self-adjoint elements in A with spectra in an interval J such that a≤b, then f(a)≤f(b) for every operator monotone function f on J, where f(a) and f(b) are defined by the Riesz-Dunford integral. Moreover, we show that some convexity properties of the usual operator convex functions are preserved in the setting of Hermitian Banach ∗-algebras. In particular, Jensen's operator inequality is presented in these cases.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-115624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-115624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将C * -代数上的算子均值的Kubo-Ando理论推广到具有连续对合的hermite Banach * -代数a上。为此,我们证明了如果a和b是a中的自伴随元素,且谱在区间J中使得a≤b,则对于J上的每一个算子单调函数f, f(a)≤f(b),其中f(a)和f(b)由Riesz-Dunford积分定义。此外,我们证明了通常算子凸函数的一些凸性性质在厄密巴拿赫*代数的集合中是保持的。特别地,在这些情况下给出了Jensen算子不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some operator inequalities for Hermitian Banach $*$-algebras
In this paper, we extend the Kubo-Ando theory from operator means on C∗-algebras to a Hermitian Banach ∗-algebra A with a continuous involution. For this purpose, we show that if a and b are self-adjoint elements in A with spectra in an interval J such that a≤b, then f(a)≤f(b) for every operator monotone function f on J, where f(a) and f(b) are defined by the Riesz-Dunford integral. Moreover, we show that some convexity properties of the usual operator convex functions are preserved in the setting of Hermitian Banach ∗-algebras. In particular, Jensen's operator inequality is presented in these cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信