使用深度学习为建筑生成设计空间

IF 1.6 0 ARCHITECTURE
Adam Sebestyen, Urs Hirschberg, S. Rasoulzadeh
{"title":"使用深度学习为建筑生成设计空间","authors":"Adam Sebestyen, Urs Hirschberg, S. Rasoulzadeh","doi":"10.1177/14780771231168232","DOIUrl":null,"url":null,"abstract":"We present an early prototype of a design system that uses Deep Learning methodology—Conditional Variational Autoencoders (CVAE)—to arrive at custom design spaces that can be interactively explored using semantic labels. Our work is closely tied to principles of parametric design. We use parametric models to create the dataset needed to train the neural network, thus tackling the problem of lacking 3D datasets needed for deep learning. We propose that the CVAE functions as a parametric tool in itself: The solution space is larger and more diverse than the combined solution spaces of all parametric models used for training. We showcase multiple methods on how this solution space can be navigated and explored, supporting explorations such as object morphing, object addition, and rudimentary 3D style transfer. As a test case, we implemented some examples of the geometric taxonomy of “Operative Design” by Di Mari and Yoo.","PeriodicalId":45139,"journal":{"name":"International Journal of Architectural Computing","volume":"21 1","pages":"337 - 357"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using deep learning to generate design spaces for architecture\",\"authors\":\"Adam Sebestyen, Urs Hirschberg, S. Rasoulzadeh\",\"doi\":\"10.1177/14780771231168232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an early prototype of a design system that uses Deep Learning methodology—Conditional Variational Autoencoders (CVAE)—to arrive at custom design spaces that can be interactively explored using semantic labels. Our work is closely tied to principles of parametric design. We use parametric models to create the dataset needed to train the neural network, thus tackling the problem of lacking 3D datasets needed for deep learning. We propose that the CVAE functions as a parametric tool in itself: The solution space is larger and more diverse than the combined solution spaces of all parametric models used for training. We showcase multiple methods on how this solution space can be navigated and explored, supporting explorations such as object morphing, object addition, and rudimentary 3D style transfer. As a test case, we implemented some examples of the geometric taxonomy of “Operative Design” by Di Mari and Yoo.\",\"PeriodicalId\":45139,\"journal\":{\"name\":\"International Journal of Architectural Computing\",\"volume\":\"21 1\",\"pages\":\"337 - 357\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Architectural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14780771231168232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Architectural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14780771231168232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个设计系统的早期原型,该系统使用深度学习方法——条件变分自动编码器(CVAE)——来获得可以使用语义标签交互探索的自定义设计空间。我们的工作与参数化设计原理紧密相连。我们使用参数模型来创建训练神经网络所需的数据集,从而解决了缺乏深度学习所需的3D数据集的问题。我们提出CVAE本身就是一个参数工具:解空间比用于训练的所有参数模型的组合解空间更大、更多样。我们展示了如何导航和探索该解决方案空间的多种方法,支持对象变形、对象添加和基本的3D样式转换等探索。作为一个测试案例,我们实现了Di-Mari和Yoo的“操作设计”的几何分类法的一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using deep learning to generate design spaces for architecture
We present an early prototype of a design system that uses Deep Learning methodology—Conditional Variational Autoencoders (CVAE)—to arrive at custom design spaces that can be interactively explored using semantic labels. Our work is closely tied to principles of parametric design. We use parametric models to create the dataset needed to train the neural network, thus tackling the problem of lacking 3D datasets needed for deep learning. We propose that the CVAE functions as a parametric tool in itself: The solution space is larger and more diverse than the combined solution spaces of all parametric models used for training. We showcase multiple methods on how this solution space can be navigated and explored, supporting explorations such as object morphing, object addition, and rudimentary 3D style transfer. As a test case, we implemented some examples of the geometric taxonomy of “Operative Design” by Di Mari and Yoo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
17.60%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信