油烟机一体化空气净化器的室内空气质量及节能潜力提升

IF 1.7 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Yumei Hou, Yukun Xu, Zhi Liu, Ziyin Lin, Wuhao Xie, Changsheng Cao, Zhiwei Zheng, Jun Gao
{"title":"油烟机一体化空气净化器的室内空气质量及节能潜力提升","authors":"Yumei Hou, Yukun Xu, Zhi Liu, Ziyin Lin, Wuhao Xie, Changsheng Cao, Zhiwei Zheng, Jun Gao","doi":"10.1080/23744731.2023.2234238","DOIUrl":null,"url":null,"abstract":"Local exhaust systems based on range hoods are widely used to reduce cooking oil fumes (COF) of kitchen spaces. This work proposes a range-hood-integrated air cleaner to improve air distribution in residential kitchens and reduce individual inhalation exposure to COF. Effects of hood exhaust rates, cooking–heating intensities, and airflow parameters of the air cleaner on the volume-averaged concentration (VAC) of kitchen space and the intake fraction (IF) are discussed through orthogonal experimental design, and significant factors are the hood exhaust rate, the air supply velocity, and angle of the air cleaner by evaluating significance levels. Optimal airflow parameters of the air cleaner are obtained through single-factor analysis, and VAC is reduced by approximately 90% compared with the single range-hood exhaust system. The energy-saving potential of the air cleaner is identified and evaluated using the concept of the equivalent exhaust rate. The air cleaner is more conducive to creating a comfortable kitchen environment and reducing heat transfer load. This work provides a new solution for optimizing air distribution in highly polluted kitchen environments.","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indoor air quality and energy-saving potential improvement of a range-hood-integrated air cleaner\",\"authors\":\"Yumei Hou, Yukun Xu, Zhi Liu, Ziyin Lin, Wuhao Xie, Changsheng Cao, Zhiwei Zheng, Jun Gao\",\"doi\":\"10.1080/23744731.2023.2234238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local exhaust systems based on range hoods are widely used to reduce cooking oil fumes (COF) of kitchen spaces. This work proposes a range-hood-integrated air cleaner to improve air distribution in residential kitchens and reduce individual inhalation exposure to COF. Effects of hood exhaust rates, cooking–heating intensities, and airflow parameters of the air cleaner on the volume-averaged concentration (VAC) of kitchen space and the intake fraction (IF) are discussed through orthogonal experimental design, and significant factors are the hood exhaust rate, the air supply velocity, and angle of the air cleaner by evaluating significance levels. Optimal airflow parameters of the air cleaner are obtained through single-factor analysis, and VAC is reduced by approximately 90% compared with the single range-hood exhaust system. The energy-saving potential of the air cleaner is identified and evaluated using the concept of the equivalent exhaust rate. The air cleaner is more conducive to creating a comfortable kitchen environment and reducing heat transfer load. This work provides a new solution for optimizing air distribution in highly polluted kitchen environments.\",\"PeriodicalId\":21556,\"journal\":{\"name\":\"Science and Technology for the Built Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology for the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23744731.2023.2234238\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology for the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23744731.2023.2234238","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indoor air quality and energy-saving potential improvement of a range-hood-integrated air cleaner
Local exhaust systems based on range hoods are widely used to reduce cooking oil fumes (COF) of kitchen spaces. This work proposes a range-hood-integrated air cleaner to improve air distribution in residential kitchens and reduce individual inhalation exposure to COF. Effects of hood exhaust rates, cooking–heating intensities, and airflow parameters of the air cleaner on the volume-averaged concentration (VAC) of kitchen space and the intake fraction (IF) are discussed through orthogonal experimental design, and significant factors are the hood exhaust rate, the air supply velocity, and angle of the air cleaner by evaluating significance levels. Optimal airflow parameters of the air cleaner are obtained through single-factor analysis, and VAC is reduced by approximately 90% compared with the single range-hood exhaust system. The energy-saving potential of the air cleaner is identified and evaluated using the concept of the equivalent exhaust rate. The air cleaner is more conducive to creating a comfortable kitchen environment and reducing heat transfer load. This work provides a new solution for optimizing air distribution in highly polluted kitchen environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology for the Built Environment
Science and Technology for the Built Environment THERMODYNAMICSCONSTRUCTION & BUILDING TECH-CONSTRUCTION & BUILDING TECHNOLOGY
CiteScore
4.30
自引率
5.30%
发文量
78
期刊介绍: Science and Technology for the Built Environment (formerly HVAC&R Research) is ASHRAE’s archival research publication, offering comprehensive reporting of original research in science and technology related to the stationary and mobile built environment, including indoor environmental quality, thermodynamic and energy system dynamics, materials properties, refrigerants, renewable and traditional energy systems and related processes and concepts, integrated built environmental system design approaches and tools, simulation approaches and algorithms, building enclosure assemblies, and systems for minimizing and regulating space heating and cooling modes. The journal features review articles that critically assess existing literature and point out future research directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信