在丢失交通数据的空间估计中,我们应该考虑网络距离还是各向异性?

Samuel de França Marques, Renan Favero, Cira Souza Pitombo
{"title":"在丢失交通数据的空间估计中,我们应该考虑网络距离还是各向异性?","authors":"Samuel de França Marques, Renan Favero, Cira Souza Pitombo","doi":"10.58922/transportes.v31i1.2822","DOIUrl":null,"url":null,"abstract":"In light of the unavailability of traffic volume data for all road segments, the scientific literature proposes estimating this variable using spatial interpolators. However, most of the methods found use the Euclidean distance between the database points as a proximity measure, in addition to ignoring the anisotropy of the phenomenon. Thus, the objective of the present study was to apply Ordinary Kriging (OK) with network distances and anisotropic OK in traffic volume data on highways in the state of São Paulo (Brazil), comparing its results to the traditional isotropic approach with Euclidean distances. Goodness-of-fit measures confirmed the good performance and better suitability of OK with network distances over the analyses that use Euclidean distances. Addressing the anisotropy of the traffic volume data also helped to improve the results. The proposed method can effectively support estimating traffic volume in segments without flow data.","PeriodicalId":30302,"journal":{"name":"Transportes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Should We Account for Network Distances or Anisotropy in the Spatial Estimation of Missing Traffic Data?\",\"authors\":\"Samuel de França Marques, Renan Favero, Cira Souza Pitombo\",\"doi\":\"10.58922/transportes.v31i1.2822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In light of the unavailability of traffic volume data for all road segments, the scientific literature proposes estimating this variable using spatial interpolators. However, most of the methods found use the Euclidean distance between the database points as a proximity measure, in addition to ignoring the anisotropy of the phenomenon. Thus, the objective of the present study was to apply Ordinary Kriging (OK) with network distances and anisotropic OK in traffic volume data on highways in the state of São Paulo (Brazil), comparing its results to the traditional isotropic approach with Euclidean distances. Goodness-of-fit measures confirmed the good performance and better suitability of OK with network distances over the analyses that use Euclidean distances. Addressing the anisotropy of the traffic volume data also helped to improve the results. The proposed method can effectively support estimating traffic volume in segments without flow data.\",\"PeriodicalId\":30302,\"journal\":{\"name\":\"Transportes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58922/transportes.v31i1.2822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58922/transportes.v31i1.2822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鉴于所有路段的交通量数据不可用,科学文献建议使用空间插值器来估计该变量。然而,发现的大多数方法除了忽略现象的各向异性外,还使用数据库点之间的欧几里得距离作为邻近度测量。因此,本研究的目的是将具有网络距离的普通克里格(OK)和各向异性OK应用于圣保罗州(巴西)高速公路的交通量数据,并将其结果与具有欧几里得距离的传统各向同性方法进行比较。拟合良好性度量证实了OK在使用欧几里得距离的分析中具有良好的性能和更好的网络距离适用性。处理交通量数据的各向异性也有助于改善结果。所提出的方法可以有效地支持在没有流量数据的情况下估计路段的交通量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Should We Account for Network Distances or Anisotropy in the Spatial Estimation of Missing Traffic Data?
In light of the unavailability of traffic volume data for all road segments, the scientific literature proposes estimating this variable using spatial interpolators. However, most of the methods found use the Euclidean distance between the database points as a proximity measure, in addition to ignoring the anisotropy of the phenomenon. Thus, the objective of the present study was to apply Ordinary Kriging (OK) with network distances and anisotropic OK in traffic volume data on highways in the state of São Paulo (Brazil), comparing its results to the traditional isotropic approach with Euclidean distances. Goodness-of-fit measures confirmed the good performance and better suitability of OK with network distances over the analyses that use Euclidean distances. Addressing the anisotropy of the traffic volume data also helped to improve the results. The proposed method can effectively support estimating traffic volume in segments without flow data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
39
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信