权无界变号分数阶p-拉普拉斯算子的主特征值

IF 0.8 4区 数学 Q2 MATHEMATICS
Oumarou Asso, M. Cuesta, J. Doumatè, L. Leadi
{"title":"权无界变号分数阶p-拉普拉斯算子的主特征值","authors":"Oumarou Asso, M. Cuesta, J. Doumatè, L. Leadi","doi":"10.58997/ejde.2023.38","DOIUrl":null,"url":null,"abstract":"Let \\(\\Omega\\) be a bounded regular domain of \\( \\mathbb{R}^N\\), \\(N\\geqslant 1\\), \\(p\\in (1,+\\infty)\\), and \\( s\\in (0,1) \\). We consider the eigenvalue problem $$\\displaylines{ (-\\Delta_p)^s u + V|u|^{p-2}u= \\lambda m(x)|u|^{p-2}u \\quad\\hbox{in } \\Omega \\cr u=0 \\quad \\hbox{in } \\mathbb{R}^N \\setminus \\Omega, }$$ where the potential V and the weight m are possibly unbounded and are sign-changing. After establishing the boundedness and regularity of weak solutions, we prove that this problem admits principal eigenvalues under certain conditions. We also show that when such eigenvalues exist, they are simple and isolated in the spectrum of the operator.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Principal eigenvalues for the fractional p-Laplacian with unbounded sign-changing weights\",\"authors\":\"Oumarou Asso, M. Cuesta, J. Doumatè, L. Leadi\",\"doi\":\"10.58997/ejde.2023.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(\\\\Omega\\\\) be a bounded regular domain of \\\\( \\\\mathbb{R}^N\\\\), \\\\(N\\\\geqslant 1\\\\), \\\\(p\\\\in (1,+\\\\infty)\\\\), and \\\\( s\\\\in (0,1) \\\\). We consider the eigenvalue problem $$\\\\displaylines{ (-\\\\Delta_p)^s u + V|u|^{p-2}u= \\\\lambda m(x)|u|^{p-2}u \\\\quad\\\\hbox{in } \\\\Omega \\\\cr u=0 \\\\quad \\\\hbox{in } \\\\mathbb{R}^N \\\\setminus \\\\Omega, }$$ where the potential V and the weight m are possibly unbounded and are sign-changing. After establishing the boundedness and regularity of weak solutions, we prove that this problem admits principal eigenvalues under certain conditions. We also show that when such eigenvalues exist, they are simple and isolated in the spectrum of the operator.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.38\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.38","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设\(\Omega\)是\(\mathbb{R}^N\)、\(N\geqslant 1\)、\(p\in(1,+\infty)\)和\(s\in(0,1)\)的有界正则域。我们考虑特征值问题$$\displaylines{(-\Delta_p)^s u+V|u|^{p-2}u=\λm(x)|u|^{p-2}u\quad\hbox{in}\Omega\cr u=0\quad\hbox{N}\mathbb{R}^N\setminus\Omega,}$$,其中势V和权重m可能是无界的,并且是变号的。在建立了弱解的有界性和正则性后,我们证明了该问题在一定条件下具有主特征值。我们还证明了当存在这样的特征值时,它们是简单的,并且在算子的谱中是孤立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principal eigenvalues for the fractional p-Laplacian with unbounded sign-changing weights
Let \(\Omega\) be a bounded regular domain of \( \mathbb{R}^N\), \(N\geqslant 1\), \(p\in (1,+\infty)\), and \( s\in (0,1) \). We consider the eigenvalue problem $$\displaylines{ (-\Delta_p)^s u + V|u|^{p-2}u= \lambda m(x)|u|^{p-2}u \quad\hbox{in } \Omega \cr u=0 \quad \hbox{in } \mathbb{R}^N \setminus \Omega, }$$ where the potential V and the weight m are possibly unbounded and are sign-changing. After establishing the boundedness and regularity of weak solutions, we prove that this problem admits principal eigenvalues under certain conditions. We also show that when such eigenvalues exist, they are simple and isolated in the spectrum of the operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信