{"title":"权无界变号分数阶p-拉普拉斯算子的主特征值","authors":"Oumarou Asso, M. Cuesta, J. Doumatè, L. Leadi","doi":"10.58997/ejde.2023.38","DOIUrl":null,"url":null,"abstract":"Let \\(\\Omega\\) be a bounded regular domain of \\( \\mathbb{R}^N\\), \\(N\\geqslant 1\\), \\(p\\in (1,+\\infty)\\), and \\( s\\in (0,1) \\). We consider the eigenvalue problem $$\\displaylines{ (-\\Delta_p)^s u + V|u|^{p-2}u= \\lambda m(x)|u|^{p-2}u \\quad\\hbox{in } \\Omega \\cr u=0 \\quad \\hbox{in } \\mathbb{R}^N \\setminus \\Omega, }$$ where the potential V and the weight m are possibly unbounded and are sign-changing. After establishing the boundedness and regularity of weak solutions, we prove that this problem admits principal eigenvalues under certain conditions. We also show that when such eigenvalues exist, they are simple and isolated in the spectrum of the operator.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Principal eigenvalues for the fractional p-Laplacian with unbounded sign-changing weights\",\"authors\":\"Oumarou Asso, M. Cuesta, J. Doumatè, L. Leadi\",\"doi\":\"10.58997/ejde.2023.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(\\\\Omega\\\\) be a bounded regular domain of \\\\( \\\\mathbb{R}^N\\\\), \\\\(N\\\\geqslant 1\\\\), \\\\(p\\\\in (1,+\\\\infty)\\\\), and \\\\( s\\\\in (0,1) \\\\). We consider the eigenvalue problem $$\\\\displaylines{ (-\\\\Delta_p)^s u + V|u|^{p-2}u= \\\\lambda m(x)|u|^{p-2}u \\\\quad\\\\hbox{in } \\\\Omega \\\\cr u=0 \\\\quad \\\\hbox{in } \\\\mathbb{R}^N \\\\setminus \\\\Omega, }$$ where the potential V and the weight m are possibly unbounded and are sign-changing. After establishing the boundedness and regularity of weak solutions, we prove that this problem admits principal eigenvalues under certain conditions. We also show that when such eigenvalues exist, they are simple and isolated in the spectrum of the operator.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.38\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.38","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Principal eigenvalues for the fractional p-Laplacian with unbounded sign-changing weights
Let \(\Omega\) be a bounded regular domain of \( \mathbb{R}^N\), \(N\geqslant 1\), \(p\in (1,+\infty)\), and \( s\in (0,1) \). We consider the eigenvalue problem $$\displaylines{ (-\Delta_p)^s u + V|u|^{p-2}u= \lambda m(x)|u|^{p-2}u \quad\hbox{in } \Omega \cr u=0 \quad \hbox{in } \mathbb{R}^N \setminus \Omega, }$$ where the potential V and the weight m are possibly unbounded and are sign-changing. After establishing the boundedness and regularity of weak solutions, we prove that this problem admits principal eigenvalues under certain conditions. We also show that when such eigenvalues exist, they are simple and isolated in the spectrum of the operator.
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.