一种基于密度的经验似然比方法用于递减密度下的拟合优度检验

V. Fakoor, M. Ajami, S. M. A. Jahanshahi, Ali Shariati
{"title":"一种基于密度的经验似然比方法用于递减密度下的拟合优度检验","authors":"V. Fakoor, M. Ajami, S. M. A. Jahanshahi, Ali Shariati","doi":"10.19139/soic-2310-5070-707","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a test for the null hypothesis that a decreasing density function belongs to a given parametric family of distribution functions against the non-parametric alternative. This method, which is based on an empirical likelihood (EL) ratio statistic, is similar to the test introduced by Vexler and Gurevich [23]. The consistency of the test statistic proposed is derived under the null and alternative hypotheses. A simulation study is conducted to inspect the power of the proposed test under various decreasing alternatives. In each scenario, the critical region of the test is obtained using a Monte Carlo technique. The applicability of the proposed test in practice is demonstrated through a few real data examples.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"66-79"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Density-Based Empirical Likelihood Ratio Approach for Goodness-of-fit Tests in Decreasing Densities\",\"authors\":\"V. Fakoor, M. Ajami, S. M. A. Jahanshahi, Ali Shariati\",\"doi\":\"10.19139/soic-2310-5070-707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a test for the null hypothesis that a decreasing density function belongs to a given parametric family of distribution functions against the non-parametric alternative. This method, which is based on an empirical likelihood (EL) ratio statistic, is similar to the test introduced by Vexler and Gurevich [23]. The consistency of the test statistic proposed is derived under the null and alternative hypotheses. A simulation study is conducted to inspect the power of the proposed test under various decreasing alternatives. In each scenario, the critical region of the test is obtained using a Monte Carlo technique. The applicability of the proposed test in practice is demonstrated through a few real data examples.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"8 1\",\"pages\":\"66-79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个零假设的检验,即递减密度函数属于一个给定的参数分布函数族,反对非参数替代。该方法基于经验似然比统计,类似于Vexler和Gurevich[23]引入的检验。提出的检验统计量的一致性是在零假设和替代假设下得出的。进行了模拟研究,以检查在各种递减方案下所提出的测试的功率。在每个场景中,使用蒙特卡罗技术获得测试的临界区域。通过几个实际数据实例证明了所提出的测试方法在实践中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Density-Based Empirical Likelihood Ratio Approach for Goodness-of-fit Tests in Decreasing Densities
In this paper, we propose a test for the null hypothesis that a decreasing density function belongs to a given parametric family of distribution functions against the non-parametric alternative. This method, which is based on an empirical likelihood (EL) ratio statistic, is similar to the test introduced by Vexler and Gurevich [23]. The consistency of the test statistic proposed is derived under the null and alternative hypotheses. A simulation study is conducted to inspect the power of the proposed test under various decreasing alternatives. In each scenario, the critical region of the test is obtained using a Monte Carlo technique. The applicability of the proposed test in practice is demonstrated through a few real data examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信