{"title":"基于蜂窝网络数据的旅游分类分析","authors":"M. Mamei, Massimo Colonna","doi":"10.1080/17489725.2018.1463466","DOIUrl":null,"url":null,"abstract":"Abstract We present and evaluate a classification method to estimate tourist presence in an area from cellular network data. Our approach is based on setting up a classifier to label users according to five main classes: residents, commuters, people in-transit, tourists and excursionists. We experiment the approach in some important tourist cities in Italy: Venice, Florence, Turin and Lecce. In the lack of sound groundtruth data, we analysed the composition of different classes obtaining results in line with domain knowledge. Moreover, these results are also supported by an analysis of the locations frequented by the tourists that well conforms with expectations. Finally, the number of users classified as tourists is strongly correlated with official statistics on tourist presence in the area.","PeriodicalId":44932,"journal":{"name":"Journal of Location Based Services","volume":"12 1","pages":"19 - 39"},"PeriodicalIF":1.2000,"publicationDate":"2018-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17489725.2018.1463466","citationCount":"9","resultStr":"{\"title\":\"Analysis of tourist classification from cellular network data\",\"authors\":\"M. Mamei, Massimo Colonna\",\"doi\":\"10.1080/17489725.2018.1463466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present and evaluate a classification method to estimate tourist presence in an area from cellular network data. Our approach is based on setting up a classifier to label users according to five main classes: residents, commuters, people in-transit, tourists and excursionists. We experiment the approach in some important tourist cities in Italy: Venice, Florence, Turin and Lecce. In the lack of sound groundtruth data, we analysed the composition of different classes obtaining results in line with domain knowledge. Moreover, these results are also supported by an analysis of the locations frequented by the tourists that well conforms with expectations. Finally, the number of users classified as tourists is strongly correlated with official statistics on tourist presence in the area.\",\"PeriodicalId\":44932,\"journal\":{\"name\":\"Journal of Location Based Services\",\"volume\":\"12 1\",\"pages\":\"19 - 39\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17489725.2018.1463466\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Location Based Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17489725.2018.1463466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Location Based Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17489725.2018.1463466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Analysis of tourist classification from cellular network data
Abstract We present and evaluate a classification method to estimate tourist presence in an area from cellular network data. Our approach is based on setting up a classifier to label users according to five main classes: residents, commuters, people in-transit, tourists and excursionists. We experiment the approach in some important tourist cities in Italy: Venice, Florence, Turin and Lecce. In the lack of sound groundtruth data, we analysed the composition of different classes obtaining results in line with domain knowledge. Moreover, these results are also supported by an analysis of the locations frequented by the tourists that well conforms with expectations. Finally, the number of users classified as tourists is strongly correlated with official statistics on tourist presence in the area.
期刊介绍:
The aim of this interdisciplinary and international journal is to provide a forum for the exchange of original ideas, techniques, designs and experiences in the rapidly growing field of location based services on networked mobile devices. It is intended to interest those who design, implement and deliver location based services in a wide range of contexts. Published research will span the field from location based computing and next-generation interfaces through telecom location architectures to business models and the social implications of this technology. The diversity of content echoes the extended nature of the chain of players required to make location based services a reality.