微扰量子场论中的几何

IF 1.2 3区 数学 Q1 MATHEMATICS
O. Schnetz
{"title":"微扰量子场论中的几何","authors":"O. Schnetz","doi":"10.4310/cntp.2021.v15.n4.a2","DOIUrl":null,"url":null,"abstract":"In perturbative quantum field theory one encounters certain, very specific geometries over the integers. These perturbative quantum geometries determine the number contents of the amplitude considered. In the article `Modular forms in quantum field theory' F. Brown and the author report on a first list of perturbative quantum geometries using the $c_2$-invariant in $\\phi^4$ theory. A main tool was denominator reduction which allowed the authors to examine graphs up to loop order (first Betti number) 10. We introduce an improved quadratic denominator reduction which makes it possible to extend the previous results to loop order 11 (and partially orders 12 and 13). For comparison, also non-$\\phi^4$ graphs are investigated. Here, we extend the results from loop order 9 to 10. The new database of 4801 unique $c_2$-invariants (previously 157) -- while being consistent with all major $c_2$-conjectures -- leads to a more refined picture of perturbative quantum geometries. In the appendix, Friedrich Knop proves a Chevalley-Warning-Ax theorem for double covers of affine space.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Geometries in perturbative quantum field theory\",\"authors\":\"O. Schnetz\",\"doi\":\"10.4310/cntp.2021.v15.n4.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In perturbative quantum field theory one encounters certain, very specific geometries over the integers. These perturbative quantum geometries determine the number contents of the amplitude considered. In the article `Modular forms in quantum field theory' F. Brown and the author report on a first list of perturbative quantum geometries using the $c_2$-invariant in $\\\\phi^4$ theory. A main tool was denominator reduction which allowed the authors to examine graphs up to loop order (first Betti number) 10. We introduce an improved quadratic denominator reduction which makes it possible to extend the previous results to loop order 11 (and partially orders 12 and 13). For comparison, also non-$\\\\phi^4$ graphs are investigated. Here, we extend the results from loop order 9 to 10. The new database of 4801 unique $c_2$-invariants (previously 157) -- while being consistent with all major $c_2$-conjectures -- leads to a more refined picture of perturbative quantum geometries. In the appendix, Friedrich Knop proves a Chevalley-Warning-Ax theorem for double covers of affine space.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2021.v15.n4.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2021.v15.n4.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

摘要

在微扰量子场论中,我们会遇到整数上某些非常特殊的几何结构。这些微扰量子几何结构决定了所考虑的振幅的数量内容。在“量子场论中的模形式”一文中,F.Brown和作者报告了使用$\phi^4$理论中的$c_2$不变量的第一个微扰量子几何列表。一个主要的工具是分母约简,它允许作者检查循环阶数(第一个Betti数)为10的图。我们引入了一种改进的二次分母约简,它可以将先前的结果扩展到循环阶数11(以及部分阶数12和13)。为了进行比较,还研究了非-$\phi^4$图。在这里,我们将结果从循环顺序9扩展到10。4801个唯一的$c_2$-不变量的新数据库(以前是157个)——同时与所有主要的$c_2$-猜想一致——导致了微扰量子几何的更精细的图像。在附录中,Friedrich Knop证明了仿射空间双覆盖的Chevalley Warning Ax定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometries in perturbative quantum field theory
In perturbative quantum field theory one encounters certain, very specific geometries over the integers. These perturbative quantum geometries determine the number contents of the amplitude considered. In the article `Modular forms in quantum field theory' F. Brown and the author report on a first list of perturbative quantum geometries using the $c_2$-invariant in $\phi^4$ theory. A main tool was denominator reduction which allowed the authors to examine graphs up to loop order (first Betti number) 10. We introduce an improved quadratic denominator reduction which makes it possible to extend the previous results to loop order 11 (and partially orders 12 and 13). For comparison, also non-$\phi^4$ graphs are investigated. Here, we extend the results from loop order 9 to 10. The new database of 4801 unique $c_2$-invariants (previously 157) -- while being consistent with all major $c_2$-conjectures -- leads to a more refined picture of perturbative quantum geometries. In the appendix, Friedrich Knop proves a Chevalley-Warning-Ax theorem for double covers of affine space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信