元素加权Kemeny距离排序数据

IF 0.6 Q4 STATISTICS & PROBABILITY
A. Albano, A. Plaia
{"title":"元素加权Kemeny距离排序数据","authors":"A. Albano, A. Plaia","doi":"10.1285/I20705948V14N1P117","DOIUrl":null,"url":null,"abstract":"Preference data are a particular type of ranking data that arise when n individuals express their preferences over a finite set of items. Within this framework, the main issue concerns the aggregation of the preferences to identify a compromise or a “consensus”, defined as the closest ranking (i.e. with the minimum distance or maximum correlation) to the whole set of preferences.  Many approaches have been proposed, but they are not sensitive to the importance of items: i.e.  changing the rank of a highly-relevant element should result in a higher penalty than changing the rank of a negligible one. The goal of this paper is to investigate the consensus between rankings taking into account the importance of items (element weights).  For this purpose, we present:  i) an element weighted rank correlation coefficient tau_ew as an extension of the Emond and Mason’s tau, and ii) an element weighted rank distance d_ew as an extension of the Kemeny distance d. The one-to-one correspondence between the weighted distance and the rank correlation coefficient is analytically proved. Moreover, a procedure to obtain the consensus ranking among n individuals is described and its performance is studied both by simulation and by the application to real datasets.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"14 1","pages":"117-145"},"PeriodicalIF":0.6000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Element weighted Kemeny distance for ranking data\",\"authors\":\"A. Albano, A. Plaia\",\"doi\":\"10.1285/I20705948V14N1P117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preference data are a particular type of ranking data that arise when n individuals express their preferences over a finite set of items. Within this framework, the main issue concerns the aggregation of the preferences to identify a compromise or a “consensus”, defined as the closest ranking (i.e. with the minimum distance or maximum correlation) to the whole set of preferences.  Many approaches have been proposed, but they are not sensitive to the importance of items: i.e.  changing the rank of a highly-relevant element should result in a higher penalty than changing the rank of a negligible one. The goal of this paper is to investigate the consensus between rankings taking into account the importance of items (element weights).  For this purpose, we present:  i) an element weighted rank correlation coefficient tau_ew as an extension of the Emond and Mason’s tau, and ii) an element weighted rank distance d_ew as an extension of the Kemeny distance d. The one-to-one correspondence between the weighted distance and the rank correlation coefficient is analytically proved. Moreover, a procedure to obtain the consensus ranking among n individuals is described and its performance is studied both by simulation and by the application to real datasets.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"14 1\",\"pages\":\"117-145\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V14N1P117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V14N1P117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

偏好数据是一种特殊类型的排名数据,当n个人对有限的一组项目表达他们的偏好时,就会出现这种数据。在这个框架中,主要问题涉及到偏好的聚合,以确定妥协或“共识”,定义为与整个偏好集最接近的排名(即具有最小距离或最大相关性)。已经提出了许多方法,但它们对项目的重要性不敏感:即改变高度相关元素的排名应该比改变可忽略的元素的排名导致更高的惩罚。本文的目标是研究考虑到项目重要性(元素权重)的排名之间的共识。为此,我们提出了:i)一个元素加权秩相关系数tau_ew作为Emond和Mason的tau的扩展,ii)一个元素加权秩距离d_ew作为Kemeny距离d的扩展。通过解析证明了加权距离和秩相关系数之间的一一对应关系。此外,本文还描述了n个个体之间的共识排序方法,并通过仿真和在实际数据集上的应用研究了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Element weighted Kemeny distance for ranking data
Preference data are a particular type of ranking data that arise when n individuals express their preferences over a finite set of items. Within this framework, the main issue concerns the aggregation of the preferences to identify a compromise or a “consensus”, defined as the closest ranking (i.e. with the minimum distance or maximum correlation) to the whole set of preferences.  Many approaches have been proposed, but they are not sensitive to the importance of items: i.e.  changing the rank of a highly-relevant element should result in a higher penalty than changing the rank of a negligible one. The goal of this paper is to investigate the consensus between rankings taking into account the importance of items (element weights).  For this purpose, we present:  i) an element weighted rank correlation coefficient tau_ew as an extension of the Emond and Mason’s tau, and ii) an element weighted rank distance d_ew as an extension of the Kemeny distance d. The one-to-one correspondence between the weighted distance and the rank correlation coefficient is analytically proved. Moreover, a procedure to obtain the consensus ranking among n individuals is described and its performance is studied both by simulation and by the application to real datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信