关于距离平衡广义Petersen图

Pub Date : 2023-08-17 DOI:10.1007/s00026-023-00660-4
Gang Ma, Jianfeng Wang, Sandi Klavžar
{"title":"关于距离平衡广义Petersen图","authors":"Gang Ma,&nbsp;Jianfeng Wang,&nbsp;Sandi Klavžar","doi":"10.1007/s00026-023-00660-4","DOIUrl":null,"url":null,"abstract":"<div><p>A connected graph <i>G</i> of diameter <span>\\(\\textrm{diam}(G) \\ge \\ell \\)</span> is <span>\\(\\ell \\)</span>-distance-balanced if <span>\\(|W_{xy}|=|W_{yx}|\\)</span> for every <span>\\(x,y\\in V(G)\\)</span> with <span>\\(d_{G}(x,y)=\\ell \\)</span>, where <span>\\(W_{xy}\\)</span> is the set of vertices of <i>G</i> that are closer to <i>x</i> than to <i>y</i>. We prove that the generalized Petersen graph <i>GP</i>(<i>n</i>, <i>k</i>) is <span>\\(\\textrm{diam}(GP(n,k))\\)</span>-distance-balanced provided that <i>n</i> is large enough relative to <i>k</i>. This partially solves a conjecture posed by Miklavič and Šparl (Discrete Appl Math 244:143–154, 2018). We also determine <span>\\(\\textrm{diam}(GP(n,k))\\)</span> when <i>n</i> is large enough relative to <i>k</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Distance-Balanced Generalized Petersen Graphs\",\"authors\":\"Gang Ma,&nbsp;Jianfeng Wang,&nbsp;Sandi Klavžar\",\"doi\":\"10.1007/s00026-023-00660-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A connected graph <i>G</i> of diameter <span>\\\\(\\\\textrm{diam}(G) \\\\ge \\\\ell \\\\)</span> is <span>\\\\(\\\\ell \\\\)</span>-distance-balanced if <span>\\\\(|W_{xy}|=|W_{yx}|\\\\)</span> for every <span>\\\\(x,y\\\\in V(G)\\\\)</span> with <span>\\\\(d_{G}(x,y)=\\\\ell \\\\)</span>, where <span>\\\\(W_{xy}\\\\)</span> is the set of vertices of <i>G</i> that are closer to <i>x</i> than to <i>y</i>. We prove that the generalized Petersen graph <i>GP</i>(<i>n</i>, <i>k</i>) is <span>\\\\(\\\\textrm{diam}(GP(n,k))\\\\)</span>-distance-balanced provided that <i>n</i> is large enough relative to <i>k</i>. This partially solves a conjecture posed by Miklavič and Šparl (Discrete Appl Math 244:143–154, 2018). We also determine <span>\\\\(\\\\textrm{diam}(GP(n,k))\\\\)</span> when <i>n</i> is large enough relative to <i>k</i>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00660-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00660-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直径为 \(textrm{diam}(G) \ge \ell \) 的连通图 G 是 \(\ell \)-distance-balanced 的,如果 \(|W_{xy}|=|W_{yx}|\) for every \(x. y\in V(G)\) with\(d_{G}(x,y)=\ell \),其中 \(W_{xy}\ 是顶点集合、yin V(G)\) with \(d_{G}(x,y)=\ell \),其中 \(W_{xy}\) 是 G 中离 x 比离 y 近的顶点的集合。我们证明,只要 n 相对于 k 足够大,广义彼得森图 GP(n, k) 就是 \(\textrm{diam}(GP(n,k))-距离平衡的。当 n 相对于 k 足够大时,我们还确定了 \(textrm{diam}(GP(n,k))\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Distance-Balanced Generalized Petersen Graphs

On Distance-Balanced Generalized Petersen Graphs

分享
查看原文
On Distance-Balanced Generalized Petersen Graphs

A connected graph G of diameter \(\textrm{diam}(G) \ge \ell \) is \(\ell \)-distance-balanced if \(|W_{xy}|=|W_{yx}|\) for every \(x,y\in V(G)\) with \(d_{G}(x,y)=\ell \), where \(W_{xy}\) is the set of vertices of G that are closer to x than to y. We prove that the generalized Petersen graph GP(nk) is \(\textrm{diam}(GP(n,k))\)-distance-balanced provided that n is large enough relative to k. This partially solves a conjecture posed by Miklavič and Šparl (Discrete Appl Math 244:143–154, 2018). We also determine \(\textrm{diam}(GP(n,k))\) when n is large enough relative to k.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信