{"title":"2019-nCoV急性呼吸道疾病(COVID-19)动态早期数学模型的启示","authors":"J. Rabajante","doi":"10.47125/jesam/2020_1/01","DOIUrl":null,"url":null,"abstract":"In December 2019, a novel coronavirus (SARS-CoV-2) has been identified to cause acute respiratory disease in humans. An outbreak of this disease has been reported in mainland China with the city of Wuhan as the recognized epicenter. The disease has also been exported to other countries, including the Philippines, but the level of spread is still under control (as of 08 February 2020). To describe and predict the dynamics of the disease, several preliminary mathematical models are formulated by various international study groups. Here, the insights that can be drawn from these models are discussed, especially as inputs for designing strategies to control the epidemics. Proposed model-based strategies on how to prevent the spread of the disease in local setting, such as during social gatherings, are also presented. The model shows that the exposure time is a significant factor in spreading the disease. As crowd density increases, the higher the chance an infected person could infect other people. The attendees of the social gathering should have effective protection or preventive measures (e.g., administrative and engineering controls) to minimize further disease transmission.","PeriodicalId":15657,"journal":{"name":"Journal of Environmental Science and Management","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Insights from Early Mathematical Models of 2019-nCoV Acute Respiratory Disease (COVID-19) Dynamics\",\"authors\":\"J. Rabajante\",\"doi\":\"10.47125/jesam/2020_1/01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In December 2019, a novel coronavirus (SARS-CoV-2) has been identified to cause acute respiratory disease in humans. An outbreak of this disease has been reported in mainland China with the city of Wuhan as the recognized epicenter. The disease has also been exported to other countries, including the Philippines, but the level of spread is still under control (as of 08 February 2020). To describe and predict the dynamics of the disease, several preliminary mathematical models are formulated by various international study groups. Here, the insights that can be drawn from these models are discussed, especially as inputs for designing strategies to control the epidemics. Proposed model-based strategies on how to prevent the spread of the disease in local setting, such as during social gatherings, are also presented. The model shows that the exposure time is a significant factor in spreading the disease. As crowd density increases, the higher the chance an infected person could infect other people. The attendees of the social gathering should have effective protection or preventive measures (e.g., administrative and engineering controls) to minimize further disease transmission.\",\"PeriodicalId\":15657,\"journal\":{\"name\":\"Journal of Environmental Science and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.47125/jesam/2020_1/01\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.47125/jesam/2020_1/01","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Insights from Early Mathematical Models of 2019-nCoV Acute Respiratory Disease (COVID-19) Dynamics
In December 2019, a novel coronavirus (SARS-CoV-2) has been identified to cause acute respiratory disease in humans. An outbreak of this disease has been reported in mainland China with the city of Wuhan as the recognized epicenter. The disease has also been exported to other countries, including the Philippines, but the level of spread is still under control (as of 08 February 2020). To describe and predict the dynamics of the disease, several preliminary mathematical models are formulated by various international study groups. Here, the insights that can be drawn from these models are discussed, especially as inputs for designing strategies to control the epidemics. Proposed model-based strategies on how to prevent the spread of the disease in local setting, such as during social gatherings, are also presented. The model shows that the exposure time is a significant factor in spreading the disease. As crowd density increases, the higher the chance an infected person could infect other people. The attendees of the social gathering should have effective protection or preventive measures (e.g., administrative and engineering controls) to minimize further disease transmission.
期刊介绍:
The Journal of Environmental Science and Management (JESAM) is an international scientific journal produced semi-annually by the University of the Philippines Los Baños (UPLB).
JESAM gives particular premium to manuscript submissions that employ integrated methods resulting to analyses that provide new insights in environmental science, particularly in the areas of:
environmental planning and management;
protected areas development, planning, and management;
community-based resources management;
environmental chemistry and toxicology;
environmental restoration;
social theory and environment; and
environmental security and management.