Shota Yamanaka, Tung D. Ta, K. Tsubouchi, Fuminori Okuya, Kenji Tsushio, Kunihiro Kato, Y. Kawahara
{"title":"SheetKey:通过导电墨水打印的模式生成触摸事件,用于用户身份验证","authors":"Shota Yamanaka, Tung D. Ta, K. Tsubouchi, Fuminori Okuya, Kenji Tsushio, Kunihiro Kato, Y. Kawahara","doi":"10.20380/GI2020.45","DOIUrl":null,"url":null,"abstract":"Personal identification numbers (PINs) and grid patterns have been used for user authentication, such as for unlocking smartphones. However, they carry the risk that attackers will learn the PINs and patterns by shoulder surfing. We propose a secure authentication method called SheetKey that requires complicated and quick touch inputs that can only be accomplished with a sheet that has a pattern printed with conductive ink. Using SheetKey, users can input a complicated combination of touch events within 0.3 s by just swiping the pad of their finger on the sheet. We investigated the requirements for producing SheetKeys, e.g., the optimal disc diameter for generating touch events. In a user study, 13 participants passed through authentication by using SheetKeys at success rates of 78–87%, while attackers using manual inputs had success rates of 0–27%. We also discuss the degree of complexity based on entropy and further improvements, e.g., entering passwords on alphabetical keyboards.","PeriodicalId":93493,"journal":{"name":"Proceedings. Graphics Interface (Conference)","volume":"1 1","pages":"452-460"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SheetKey: Generating Touch Events by a Pattern Printed with Conductive Ink for User Authentication\",\"authors\":\"Shota Yamanaka, Tung D. Ta, K. Tsubouchi, Fuminori Okuya, Kenji Tsushio, Kunihiro Kato, Y. Kawahara\",\"doi\":\"10.20380/GI2020.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal identification numbers (PINs) and grid patterns have been used for user authentication, such as for unlocking smartphones. However, they carry the risk that attackers will learn the PINs and patterns by shoulder surfing. We propose a secure authentication method called SheetKey that requires complicated and quick touch inputs that can only be accomplished with a sheet that has a pattern printed with conductive ink. Using SheetKey, users can input a complicated combination of touch events within 0.3 s by just swiping the pad of their finger on the sheet. We investigated the requirements for producing SheetKeys, e.g., the optimal disc diameter for generating touch events. In a user study, 13 participants passed through authentication by using SheetKeys at success rates of 78–87%, while attackers using manual inputs had success rates of 0–27%. We also discuss the degree of complexity based on entropy and further improvements, e.g., entering passwords on alphabetical keyboards.\",\"PeriodicalId\":93493,\"journal\":{\"name\":\"Proceedings. Graphics Interface (Conference)\",\"volume\":\"1 1\",\"pages\":\"452-460\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Graphics Interface (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20380/GI2020.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Graphics Interface (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20380/GI2020.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SheetKey: Generating Touch Events by a Pattern Printed with Conductive Ink for User Authentication
Personal identification numbers (PINs) and grid patterns have been used for user authentication, such as for unlocking smartphones. However, they carry the risk that attackers will learn the PINs and patterns by shoulder surfing. We propose a secure authentication method called SheetKey that requires complicated and quick touch inputs that can only be accomplished with a sheet that has a pattern printed with conductive ink. Using SheetKey, users can input a complicated combination of touch events within 0.3 s by just swiping the pad of their finger on the sheet. We investigated the requirements for producing SheetKeys, e.g., the optimal disc diameter for generating touch events. In a user study, 13 participants passed through authentication by using SheetKeys at success rates of 78–87%, while attackers using manual inputs had success rates of 0–27%. We also discuss the degree of complexity based on entropy and further improvements, e.g., entering passwords on alphabetical keyboards.