负权向量值模拟模形式的局部Maas形式和Eichler-Selberg关系

Pub Date : 2021-08-30 DOI:10.2140/pjm.2023.322.381
Joshua Males, Andreas Mono
{"title":"负权向量值模拟模形式的局部Maas形式和Eichler-Selberg关系","authors":"Joshua Males, Andreas Mono","doi":"10.2140/pjm.2023.322.381","DOIUrl":null,"url":null,"abstract":"By comparing two different evaluations of a modified (\\`{a} la Borcherds) higher Siegel theta lift on even lattices of signature $(r,s)$, we prove Eichler--Selberg type relations for a wide class of negative weight vector-valued mock modular forms. In doing so, we detail several properties of the lift, as well as showing that it produces an infinite family of local (and locally harmonic) Maa{\\ss} forms on Grassmanians in certain signatures.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Local Maass forms and Eichler–Selberg relations\\nfor negative-weight vector-valued mock modular forms\",\"authors\":\"Joshua Males, Andreas Mono\",\"doi\":\"10.2140/pjm.2023.322.381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By comparing two different evaluations of a modified (\\\\`{a} la Borcherds) higher Siegel theta lift on even lattices of signature $(r,s)$, we prove Eichler--Selberg type relations for a wide class of negative weight vector-valued mock modular forms. In doing so, we detail several properties of the lift, as well as showing that it produces an infinite family of local (and locally harmonic) Maa{\\\\ss} forms on Grassmanians in certain signatures.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.322.381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.322.381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过比较签名$(r,s)$的偶格上修正的(\ {a} la Borcherds)较高Siegel theta提升的两种不同的求值,我们证明了一类广泛的负权向量值模拟模形式的Eichler—Selberg型关系。在此过程中,我们详细介绍了升力的几个性质,并证明了它在某些签名的格拉斯曼子上产生无限族的局部(和局部调和)Maa{\ss}形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Local Maass forms and Eichler–Selberg relations for negative-weight vector-valued mock modular forms
By comparing two different evaluations of a modified (\`{a} la Borcherds) higher Siegel theta lift on even lattices of signature $(r,s)$, we prove Eichler--Selberg type relations for a wide class of negative weight vector-valued mock modular forms. In doing so, we detail several properties of the lift, as well as showing that it produces an infinite family of local (and locally harmonic) Maa{\ss} forms on Grassmanians in certain signatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信