Istemi F. Ozkan, N. Ebrahimi, Jieying Zhang, Dario Markovinovic, H. Shirkhani
{"title":"气候变化下加拿大钢铁基础设施大气腐蚀研究","authors":"Istemi F. Ozkan, N. Ebrahimi, Jieying Zhang, Dario Markovinovic, H. Shirkhani","doi":"10.5006/4296","DOIUrl":null,"url":null,"abstract":"Protection against atmospheric corrosion of steel infrastructure and its components requires assessment and prediction of corrosion rates using quantitative and reliable modelling of the environmental parameters that impact the corrosion process. This has become even more critical in the context of climate change. This study demonstrates the feasibility of using ISO Dose-response Functions (DRFs) to classify atmospheric corrosivity in Canada to improve the current qualitative approach to the corrosion design of carbon steel infrastructure, especially bridges. The DRF predictions for first-year corrosion rates were first confirmed using a set of historical field data collected from different locations across Canada. Further examination has revealed a dramatic change in atmospheric corrosivity at many locations in Canada since the last systematic effort in field data collection in the 1950-60s. it is believed that this was caused by significant drop in in sulfur dioxide levels in the atmosphere. A projection of future corrosivity in various Canadian cities with differing climates was also presented by considering the projected impacts of climate change on the temperature and relative humidity. This study has shown a promising precursor for the development of a corrosivity map in Canada to better guide the corrosion design and protection of steel infrastructure. Furthermore, this study has demonstrated an acute need to understand the current chloride deposition conditions of steel bridges, including the increased local exposure of roadways to corrosivity by the use of de-icing salts.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atmospheric Corrosion of Steel Infrastructure in Canada under Climate Change\",\"authors\":\"Istemi F. Ozkan, N. Ebrahimi, Jieying Zhang, Dario Markovinovic, H. Shirkhani\",\"doi\":\"10.5006/4296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protection against atmospheric corrosion of steel infrastructure and its components requires assessment and prediction of corrosion rates using quantitative and reliable modelling of the environmental parameters that impact the corrosion process. This has become even more critical in the context of climate change. This study demonstrates the feasibility of using ISO Dose-response Functions (DRFs) to classify atmospheric corrosivity in Canada to improve the current qualitative approach to the corrosion design of carbon steel infrastructure, especially bridges. The DRF predictions for first-year corrosion rates were first confirmed using a set of historical field data collected from different locations across Canada. Further examination has revealed a dramatic change in atmospheric corrosivity at many locations in Canada since the last systematic effort in field data collection in the 1950-60s. it is believed that this was caused by significant drop in in sulfur dioxide levels in the atmosphere. A projection of future corrosivity in various Canadian cities with differing climates was also presented by considering the projected impacts of climate change on the temperature and relative humidity. This study has shown a promising precursor for the development of a corrosivity map in Canada to better guide the corrosion design and protection of steel infrastructure. Furthermore, this study has demonstrated an acute need to understand the current chloride deposition conditions of steel bridges, including the increased local exposure of roadways to corrosivity by the use of de-icing salts.\",\"PeriodicalId\":10717,\"journal\":{\"name\":\"Corrosion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5006/4296\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4296","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Atmospheric Corrosion of Steel Infrastructure in Canada under Climate Change
Protection against atmospheric corrosion of steel infrastructure and its components requires assessment and prediction of corrosion rates using quantitative and reliable modelling of the environmental parameters that impact the corrosion process. This has become even more critical in the context of climate change. This study demonstrates the feasibility of using ISO Dose-response Functions (DRFs) to classify atmospheric corrosivity in Canada to improve the current qualitative approach to the corrosion design of carbon steel infrastructure, especially bridges. The DRF predictions for first-year corrosion rates were first confirmed using a set of historical field data collected from different locations across Canada. Further examination has revealed a dramatic change in atmospheric corrosivity at many locations in Canada since the last systematic effort in field data collection in the 1950-60s. it is believed that this was caused by significant drop in in sulfur dioxide levels in the atmosphere. A projection of future corrosivity in various Canadian cities with differing climates was also presented by considering the projected impacts of climate change on the temperature and relative humidity. This study has shown a promising precursor for the development of a corrosivity map in Canada to better guide the corrosion design and protection of steel infrastructure. Furthermore, this study has demonstrated an acute need to understand the current chloride deposition conditions of steel bridges, including the increased local exposure of roadways to corrosivity by the use of de-icing salts.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.