Mather差作为弧空间中的嵌入维数

IF 1.1 2区 数学 Q1 MATHEMATICS
H. Mourtada, Ana J. Reguera
{"title":"Mather差作为弧空间中的嵌入维数","authors":"H. Mourtada, Ana J. Reguera","doi":"10.4171/PRIMS/54-1-4","DOIUrl":null,"url":null,"abstract":"Let X be a variety over a field k and let X∞ be its space of arcs. We study the embedding dimension of the completion A^ of the local ring of X∞ at P where P is the stable point defined by a divisorial valuation ν on X. Assuming char k = 0, we prove that the embedding dimension of A^ is equal to k + 1 where k is the Mather discrepancy of X with respect to ν. We also obtain that the dimension of A^ has as lower bound the Mather-Jacobian log-discrepancy of X with respect to ν. For X normal and complete intersection, we prove as a consequence that points P of codimension one in X ∞ have discrepancy k ≤ 0.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/54-1-4","citationCount":"11","resultStr":"{\"title\":\"Mather Discrepancy as an Embedding Dimension in the Space of Arcs\",\"authors\":\"H. Mourtada, Ana J. Reguera\",\"doi\":\"10.4171/PRIMS/54-1-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X be a variety over a field k and let X∞ be its space of arcs. We study the embedding dimension of the completion A^ of the local ring of X∞ at P where P is the stable point defined by a divisorial valuation ν on X. Assuming char k = 0, we prove that the embedding dimension of A^ is equal to k + 1 where k is the Mather discrepancy of X with respect to ν. We also obtain that the dimension of A^ has as lower bound the Mather-Jacobian log-discrepancy of X with respect to ν. For X normal and complete intersection, we prove as a consequence that points P of codimension one in X ∞ have discrepancy k ≤ 0.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/PRIMS/54-1-4\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/PRIMS/54-1-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/PRIMS/54-1-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

设X是域k上的一个变种,设X∞是它的弧空间。我们研究了X∞的局部环在P上的完备A^的嵌入维数,其中P是由X上的除数赋值Γ定义的稳定点。假设chark=0,我们证明了A^的嵌维数等于k+1,其中k是X相对于Γ的Mather差。我们还得到了A^的维数具有X相对于Γ的Mather-Jacobian对数偏差的下界。对于X正规完全交,我们证明了X∞中余维1的点P的偏差k≤0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mather Discrepancy as an Embedding Dimension in the Space of Arcs
Let X be a variety over a field k and let X∞ be its space of arcs. We study the embedding dimension of the completion A^ of the local ring of X∞ at P where P is the stable point defined by a divisorial valuation ν on X. Assuming char k = 0, we prove that the embedding dimension of A^ is equal to k + 1 where k is the Mather discrepancy of X with respect to ν. We also obtain that the dimension of A^ has as lower bound the Mather-Jacobian log-discrepancy of X with respect to ν. For X normal and complete intersection, we prove as a consequence that points P of codimension one in X ∞ have discrepancy k ≤ 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信