{"title":"智能建筑中基于智能手机传感器的无基础设施室内导航","authors":"A. Chehreghan, E. Saadatzadeh, R. Abbaspour","doi":"10.1080/17489725.2023.2168078","DOIUrl":null,"url":null,"abstract":"ABSTRACT One of the main elements of location-based services (LBS) is the awareness and knowledge of the user’s location information inside the smart buildings. In this study, a smartphone sensor-based indoor positioning system (IPS) is proposed to track a person’s location in Texting and Pocket carrying modes in a smart building. The gravity, gyroscope, and magnetometer sensors data were combined using a gradient descent algorithm (GDA) to estimate the heading angle. This system was implemented in three straight, complex, and rectangular paths. The mean (M) and standard deviation (SD) of the absolute heading error of each step were obtained as (1.68°, 1.97°) in the Texting mode and (4.39°, 5.22°) in the Pocket mode, respectively. Acceleration and angle-based models were employed to estimate the step length in the Texting and Pocket modes, respectively. The mean relative error (MRE) of the distance in the Texting and Pocket modes were obtained as %4.8 and %4.37, respectively. Experimental results indicated the MRE of the final position along the three paths in the two carrying modes of Texting and Pocket by magnetic and proposed methods reduced from %3.75 to %2.66 and %7.02 to %4.24, respectively.","PeriodicalId":44932,"journal":{"name":"Journal of Location Based Services","volume":"17 1","pages":"145 - 184"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrastructure-free indoor navigation based on smartphone sensors in smart buildings\",\"authors\":\"A. Chehreghan, E. Saadatzadeh, R. Abbaspour\",\"doi\":\"10.1080/17489725.2023.2168078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT One of the main elements of location-based services (LBS) is the awareness and knowledge of the user’s location information inside the smart buildings. In this study, a smartphone sensor-based indoor positioning system (IPS) is proposed to track a person’s location in Texting and Pocket carrying modes in a smart building. The gravity, gyroscope, and magnetometer sensors data were combined using a gradient descent algorithm (GDA) to estimate the heading angle. This system was implemented in three straight, complex, and rectangular paths. The mean (M) and standard deviation (SD) of the absolute heading error of each step were obtained as (1.68°, 1.97°) in the Texting mode and (4.39°, 5.22°) in the Pocket mode, respectively. Acceleration and angle-based models were employed to estimate the step length in the Texting and Pocket modes, respectively. The mean relative error (MRE) of the distance in the Texting and Pocket modes were obtained as %4.8 and %4.37, respectively. Experimental results indicated the MRE of the final position along the three paths in the two carrying modes of Texting and Pocket by magnetic and proposed methods reduced from %3.75 to %2.66 and %7.02 to %4.24, respectively.\",\"PeriodicalId\":44932,\"journal\":{\"name\":\"Journal of Location Based Services\",\"volume\":\"17 1\",\"pages\":\"145 - 184\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Location Based Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17489725.2023.2168078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Location Based Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17489725.2023.2168078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Infrastructure-free indoor navigation based on smartphone sensors in smart buildings
ABSTRACT One of the main elements of location-based services (LBS) is the awareness and knowledge of the user’s location information inside the smart buildings. In this study, a smartphone sensor-based indoor positioning system (IPS) is proposed to track a person’s location in Texting and Pocket carrying modes in a smart building. The gravity, gyroscope, and magnetometer sensors data were combined using a gradient descent algorithm (GDA) to estimate the heading angle. This system was implemented in three straight, complex, and rectangular paths. The mean (M) and standard deviation (SD) of the absolute heading error of each step were obtained as (1.68°, 1.97°) in the Texting mode and (4.39°, 5.22°) in the Pocket mode, respectively. Acceleration and angle-based models were employed to estimate the step length in the Texting and Pocket modes, respectively. The mean relative error (MRE) of the distance in the Texting and Pocket modes were obtained as %4.8 and %4.37, respectively. Experimental results indicated the MRE of the final position along the three paths in the two carrying modes of Texting and Pocket by magnetic and proposed methods reduced from %3.75 to %2.66 and %7.02 to %4.24, respectively.
期刊介绍:
The aim of this interdisciplinary and international journal is to provide a forum for the exchange of original ideas, techniques, designs and experiences in the rapidly growing field of location based services on networked mobile devices. It is intended to interest those who design, implement and deliver location based services in a wide range of contexts. Published research will span the field from location based computing and next-generation interfaces through telecom location architectures to business models and the social implications of this technology. The diversity of content echoes the extended nature of the chain of players required to make location based services a reality.