无极性的维度:对von Hippel和Huron(2020)的回应和扩展

IF 0.6 0 MUSIC
Jason Yust
{"title":"无极性的维度:对von Hippel和Huron(2020)的回应和扩展","authors":"Jason Yust","doi":"10.18061/emr.v15i1-2.7832","DOIUrl":null,"url":null,"abstract":"This commentary addresses von Hippel and Huron’s (2020) work on “tonal and anti-tonal” structures in twelve-tone music and offers a possible extension making use of discrete Fourier transforms. Submitted 2020 June 9; accepted 2020 June 11. Published 2020 October 22; https://doi.org/10.18061/emr.v15i1-2.7832","PeriodicalId":44128,"journal":{"name":"Empirical Musicology Review","volume":"15 1","pages":"119"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dimensions of Atonality: A Response and Extension of von Hippel and Huron (2020)\",\"authors\":\"Jason Yust\",\"doi\":\"10.18061/emr.v15i1-2.7832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This commentary addresses von Hippel and Huron’s (2020) work on “tonal and anti-tonal” structures in twelve-tone music and offers a possible extension making use of discrete Fourier transforms. Submitted 2020 June 9; accepted 2020 June 11. Published 2020 October 22; https://doi.org/10.18061/emr.v15i1-2.7832\",\"PeriodicalId\":44128,\"journal\":{\"name\":\"Empirical Musicology Review\",\"volume\":\"15 1\",\"pages\":\"119\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Empirical Musicology Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18061/emr.v15i1-2.7832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MUSIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Musicology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18061/emr.v15i1-2.7832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 1

摘要

这篇评论阐述了von Hippel和Huron(2020)关于十二音音乐中“音调和反音调”结构的工作,并提供了利用离散傅立叶变换的可能扩展。提交2020年6月9日;接受2020年6月11日。出版于2020年10月22日;https://doi.org/10.18061/emr.v15i1-2.7832
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimensions of Atonality: A Response and Extension of von Hippel and Huron (2020)
This commentary addresses von Hippel and Huron’s (2020) work on “tonal and anti-tonal” structures in twelve-tone music and offers a possible extension making use of discrete Fourier transforms. Submitted 2020 June 9; accepted 2020 June 11. Published 2020 October 22; https://doi.org/10.18061/emr.v15i1-2.7832
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信