{"title":"具有时滞的分数阶演化方程s -渐近周期解的存在性和全局渐近性","authors":"Qiang Li, Lishan Liu, Xuan Wu","doi":"10.15388/namc.2023.28.32643","DOIUrl":null,"url":null,"abstract":"This paper discusses the S-asymptotically periodic problem of fractional evolution equation with delay. By introducing a new noncompact measure theory involving infinite interval, we study the existence of S-asymptotically periodic mild solutions under the situation that the relevant semigroup is noncompact and the nonlinear term satisfies more general growth conditions instead of Lipschitz-type conditions. Moreover, by establishing a new Gronwall-type integral inequality corresponding to fractional differential equation with delay, we consider the global asymptotic behavior of S-asymptotically periodic mild solutions, which will make up for the blank of this field.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and global asymptotic behavior of S-asymptotically periodic solutions for fractional evolution equation with delay\",\"authors\":\"Qiang Li, Lishan Liu, Xuan Wu\",\"doi\":\"10.15388/namc.2023.28.32643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the S-asymptotically periodic problem of fractional evolution equation with delay. By introducing a new noncompact measure theory involving infinite interval, we study the existence of S-asymptotically periodic mild solutions under the situation that the relevant semigroup is noncompact and the nonlinear term satisfies more general growth conditions instead of Lipschitz-type conditions. Moreover, by establishing a new Gronwall-type integral inequality corresponding to fractional differential equation with delay, we consider the global asymptotic behavior of S-asymptotically periodic mild solutions, which will make up for the blank of this field.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2023.28.32643\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2023.28.32643","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Existence and global asymptotic behavior of S-asymptotically periodic solutions for fractional evolution equation with delay
This paper discusses the S-asymptotically periodic problem of fractional evolution equation with delay. By introducing a new noncompact measure theory involving infinite interval, we study the existence of S-asymptotically periodic mild solutions under the situation that the relevant semigroup is noncompact and the nonlinear term satisfies more general growth conditions instead of Lipschitz-type conditions. Moreover, by establishing a new Gronwall-type integral inequality corresponding to fractional differential equation with delay, we consider the global asymptotic behavior of S-asymptotically periodic mild solutions, which will make up for the blank of this field.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.