{"title":"飞秒激光脉冲后金属中的局部非平衡电子输运:一个多温度双曲模型","authors":"S. Sobolev","doi":"10.1080/15567265.2021.1985022","DOIUrl":null,"url":null,"abstract":"ABSTRACT The trend toward miniaturization of electronic devices has increased the interest in nano scale heat transport, particularly, in laser-excited solids where electron–electron thermalization and electron-phonon coupling play a key role. Using a multi-temperature hyperbolic model, which takes into account the coupling between initially non-thermalized electrons and different phonon branches, we obtain a hierarchy of heat conduction equations for the electron temperature, which arises due to multi-length and time scales nature of coupling between different excitations. The hierarchy predicts that the ultrashort laser pulse induces a multi-front temperature wave propagating into the bulk of the material, which includes various heat transport regimes, ranging from the ballistic motion of the initially non-thermalized electrons propagating on the shortest time scale without interaction with the lattice as a temperature discontinuity, to the continuous wave-like temperature fronts arising on the intermediate time scale due to coupling between various excitations, and eventually to the classical Fourier transport on the longest time scale. The model is expected to be useful for modeling heat wave propagation phenomena in heterostructures and metamaterials.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"25 1","pages":"153 - 165"},"PeriodicalIF":2.7000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Local Nonequilibrium Electron Transport in Metals after Femtosecond Laser Pulses: A Multi-Temperature Hyperbolic Model\",\"authors\":\"S. Sobolev\",\"doi\":\"10.1080/15567265.2021.1985022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The trend toward miniaturization of electronic devices has increased the interest in nano scale heat transport, particularly, in laser-excited solids where electron–electron thermalization and electron-phonon coupling play a key role. Using a multi-temperature hyperbolic model, which takes into account the coupling between initially non-thermalized electrons and different phonon branches, we obtain a hierarchy of heat conduction equations for the electron temperature, which arises due to multi-length and time scales nature of coupling between different excitations. The hierarchy predicts that the ultrashort laser pulse induces a multi-front temperature wave propagating into the bulk of the material, which includes various heat transport regimes, ranging from the ballistic motion of the initially non-thermalized electrons propagating on the shortest time scale without interaction with the lattice as a temperature discontinuity, to the continuous wave-like temperature fronts arising on the intermediate time scale due to coupling between various excitations, and eventually to the classical Fourier transport on the longest time scale. The model is expected to be useful for modeling heat wave propagation phenomena in heterostructures and metamaterials.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"25 1\",\"pages\":\"153 - 165\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2021.1985022\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2021.1985022","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Local Nonequilibrium Electron Transport in Metals after Femtosecond Laser Pulses: A Multi-Temperature Hyperbolic Model
ABSTRACT The trend toward miniaturization of electronic devices has increased the interest in nano scale heat transport, particularly, in laser-excited solids where electron–electron thermalization and electron-phonon coupling play a key role. Using a multi-temperature hyperbolic model, which takes into account the coupling between initially non-thermalized electrons and different phonon branches, we obtain a hierarchy of heat conduction equations for the electron temperature, which arises due to multi-length and time scales nature of coupling between different excitations. The hierarchy predicts that the ultrashort laser pulse induces a multi-front temperature wave propagating into the bulk of the material, which includes various heat transport regimes, ranging from the ballistic motion of the initially non-thermalized electrons propagating on the shortest time scale without interaction with the lattice as a temperature discontinuity, to the continuous wave-like temperature fronts arising on the intermediate time scale due to coupling between various excitations, and eventually to the classical Fourier transport on the longest time scale. The model is expected to be useful for modeling heat wave propagation phenomena in heterostructures and metamaterials.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.