Eduarda T. C. Chagas, Marcelo Queiroz-Oliveira, Osvaldo A. Rosso, Heitor S. Ramos, Cristopher G. S. Freitas, Alejandro C. Frery
{"title":"熵-复杂度平面上有序模式的白噪声检验","authors":"Eduarda T. C. Chagas, Marcelo Queiroz-Oliveira, Osvaldo A. Rosso, Heitor S. Ramos, Cristopher G. S. Freitas, Alejandro C. Frery","doi":"10.1111/insr.12487","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This article serves two purposes. Firstly, it surveys the Bandt and Pompe methodology for the statistical community, stressing topics that are open for research. Secondly, it contributes towards a better understanding of the statistical properties of that approach for time series analysis. The Bandt and Pompe methodology consists of computing information theory descriptors from the histogram of ordinal patterns. Such descriptors lie in a 2D manifold: the entropy–complexity plane. This article provides the first proposal of a test in the entropy–complexity plane for the white noise hypothesis. Our test is based on true white noise sequences obtained from physical devices. The proposed methodology provides consistent results: It assesses sequences of true random samples as random (adequate test size), rejects correlated and contaminated sequences (sound test power) and captures the randomness of generators previously analysed in the literature.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"White Noise Test from Ordinal Patterns in the Entropy–Complexity Plane\",\"authors\":\"Eduarda T. C. Chagas, Marcelo Queiroz-Oliveira, Osvaldo A. Rosso, Heitor S. Ramos, Cristopher G. S. Freitas, Alejandro C. Frery\",\"doi\":\"10.1111/insr.12487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This article serves two purposes. Firstly, it surveys the Bandt and Pompe methodology for the statistical community, stressing topics that are open for research. Secondly, it contributes towards a better understanding of the statistical properties of that approach for time series analysis. The Bandt and Pompe methodology consists of computing information theory descriptors from the histogram of ordinal patterns. Such descriptors lie in a 2D manifold: the entropy–complexity plane. This article provides the first proposal of a test in the entropy–complexity plane for the white noise hypothesis. Our test is based on true white noise sequences obtained from physical devices. The proposed methodology provides consistent results: It assesses sequences of true random samples as random (adequate test size), rejects correlated and contaminated sequences (sound test power) and captures the randomness of generators previously analysed in the literature.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12487\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12487","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
White Noise Test from Ordinal Patterns in the Entropy–Complexity Plane
This article serves two purposes. Firstly, it surveys the Bandt and Pompe methodology for the statistical community, stressing topics that are open for research. Secondly, it contributes towards a better understanding of the statistical properties of that approach for time series analysis. The Bandt and Pompe methodology consists of computing information theory descriptors from the histogram of ordinal patterns. Such descriptors lie in a 2D manifold: the entropy–complexity plane. This article provides the first proposal of a test in the entropy–complexity plane for the white noise hypothesis. Our test is based on true white noise sequences obtained from physical devices. The proposed methodology provides consistent results: It assesses sequences of true random samples as random (adequate test size), rejects correlated and contaminated sequences (sound test power) and captures the randomness of generators previously analysed in the literature.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.