Jacob O. Rothbaum, A. Motta, Yosi Kratish, T. Marks
{"title":"化学发散型有机镧系化合物催化C-H -单-1硼化氮","authors":"Jacob O. Rothbaum, A. Motta, Yosi Kratish, T. Marks","doi":"10.33774/chemrxiv-2021-38h45","DOIUrl":null,"url":null,"abstract":"C-H activation and functionalization of pyridinoid azines is a key transformation forthe synthesis of many natural products, pharmaceuticals, and materials. Reflecting the azinyl nitrogen lone-pair steric repulsion, tendency to irreversibly bind to metal ion catalysts, and the electron-deficient nature of pyridine, C-H functionalization at the important a-position remains challenging. Thus, the development of earth abundant catalysts for the a-selective mono-functionalization of azines is a crucial hurdle for modern chemical synthesis. Here, the selective organolanthanide catalyzed a-mono-borylation of a diverse series of pyridines is reported, affording a valuable precursor for cross-coupling reactions. Experimental and theoretical mechanistic evidence support the formation of a C-H activated η2-lanthanide-azine complex, followed by intermolecular a-mono-borylation via σ-bond metathesis. Notably, varying the lanthanide identity and substrate electronics promotes chemodivergence of the catalytic selectivity: smaller/more electrophilic lanthanide3+ ions and electron-rich substrates favor selective a-C-H functionalization, whereas larger/less electrophilic lanthanide3+ 1 ions and electron poor substrates favor selective B-N bond-forming 1,2-dearomatization. Such organolanthanide series catalytic chemodivergence is, to our knowledge, unprecedented.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemodivergent Organolanthanide Catalyzed C-H a-Mono-1 Borylation of Azines\",\"authors\":\"Jacob O. Rothbaum, A. Motta, Yosi Kratish, T. Marks\",\"doi\":\"10.33774/chemrxiv-2021-38h45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"C-H activation and functionalization of pyridinoid azines is a key transformation forthe synthesis of many natural products, pharmaceuticals, and materials. Reflecting the azinyl nitrogen lone-pair steric repulsion, tendency to irreversibly bind to metal ion catalysts, and the electron-deficient nature of pyridine, C-H functionalization at the important a-position remains challenging. Thus, the development of earth abundant catalysts for the a-selective mono-functionalization of azines is a crucial hurdle for modern chemical synthesis. Here, the selective organolanthanide catalyzed a-mono-borylation of a diverse series of pyridines is reported, affording a valuable precursor for cross-coupling reactions. Experimental and theoretical mechanistic evidence support the formation of a C-H activated η2-lanthanide-azine complex, followed by intermolecular a-mono-borylation via σ-bond metathesis. Notably, varying the lanthanide identity and substrate electronics promotes chemodivergence of the catalytic selectivity: smaller/more electrophilic lanthanide3+ ions and electron-rich substrates favor selective a-C-H functionalization, whereas larger/less electrophilic lanthanide3+ 1 ions and electron poor substrates favor selective B-N bond-forming 1,2-dearomatization. Such organolanthanide series catalytic chemodivergence is, to our knowledge, unprecedented.\",\"PeriodicalId\":72565,\"journal\":{\"name\":\"ChemRxiv : the preprint server for chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv : the preprint server for chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33774/chemrxiv-2021-38h45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-38h45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemodivergent Organolanthanide Catalyzed C-H a-Mono-1 Borylation of Azines
C-H activation and functionalization of pyridinoid azines is a key transformation forthe synthesis of many natural products, pharmaceuticals, and materials. Reflecting the azinyl nitrogen lone-pair steric repulsion, tendency to irreversibly bind to metal ion catalysts, and the electron-deficient nature of pyridine, C-H functionalization at the important a-position remains challenging. Thus, the development of earth abundant catalysts for the a-selective mono-functionalization of azines is a crucial hurdle for modern chemical synthesis. Here, the selective organolanthanide catalyzed a-mono-borylation of a diverse series of pyridines is reported, affording a valuable precursor for cross-coupling reactions. Experimental and theoretical mechanistic evidence support the formation of a C-H activated η2-lanthanide-azine complex, followed by intermolecular a-mono-borylation via σ-bond metathesis. Notably, varying the lanthanide identity and substrate electronics promotes chemodivergence of the catalytic selectivity: smaller/more electrophilic lanthanide3+ ions and electron-rich substrates favor selective a-C-H functionalization, whereas larger/less electrophilic lanthanide3+ 1 ions and electron poor substrates favor selective B-N bond-forming 1,2-dearomatization. Such organolanthanide series catalytic chemodivergence is, to our knowledge, unprecedented.