大涡模拟中壁面剪应力的图神经网络建模

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
D. Dupuy, N. Odier, C. Lapeyre, D. Papadogiannis
{"title":"大涡模拟中壁面剪应力的图神经网络建模","authors":"D. Dupuy, N. Odier, C. Lapeyre, D. Papadogiannis","doi":"10.1017/dce.2023.2","DOIUrl":null,"url":null,"abstract":"Abstract As the Reynolds number increases, the large-eddy simulation (LES) of complex flows becomes increasingly intractable because near-wall turbulent structures become increasingly small. Wall modeling reduces the computational requirements of LES by enabling the use of coarser cells at the walls. This paper presents a machine-learning methodology to develop data-driven wall-shear-stress models that can directly operate, a posteriori, on the unstructured grid of the simulation. The model architecture is based on graph neural networks. The model is trained on a database which includes fully developed boundary layers, adverse pressure gradients, separated boundary layers, and laminar–turbulent transition. The relevance of the trained model is verified a posteriori for the simulation of a channel flow, a backward-facing step and a linear blade cascade.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the wall shear stress in large-eddy simulation using graph neural networks\",\"authors\":\"D. Dupuy, N. Odier, C. Lapeyre, D. Papadogiannis\",\"doi\":\"10.1017/dce.2023.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As the Reynolds number increases, the large-eddy simulation (LES) of complex flows becomes increasingly intractable because near-wall turbulent structures become increasingly small. Wall modeling reduces the computational requirements of LES by enabling the use of coarser cells at the walls. This paper presents a machine-learning methodology to develop data-driven wall-shear-stress models that can directly operate, a posteriori, on the unstructured grid of the simulation. The model architecture is based on graph neural networks. The model is trained on a database which includes fully developed boundary layers, adverse pressure gradients, separated boundary layers, and laminar–turbulent transition. The relevance of the trained model is verified a posteriori for the simulation of a channel flow, a backward-facing step and a linear blade cascade.\",\"PeriodicalId\":34169,\"journal\":{\"name\":\"DataCentric Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DataCentric Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/dce.2023.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2023.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着雷诺数的增加,近壁湍流结构变得越来越小,复杂流动的大涡模拟变得越来越棘手。墙壁建模通过允许在墙壁上使用较粗的单元,减少了LES的计算需求。本文提出了一种机器学习方法来开发数据驱动的墙壁剪切应力模型,该模型可以直接在模拟的非结构化网格上进行后验操作。模型结构基于图神经网络。该模型是在一个数据库上训练的,该数据库包括完全发育的边界层、逆压梯度、分离的边界层和层流-湍流过渡。通过对通道流、后向阶跃和线性叶栅的后验仿真,验证了所训练模型的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the wall shear stress in large-eddy simulation using graph neural networks
Abstract As the Reynolds number increases, the large-eddy simulation (LES) of complex flows becomes increasingly intractable because near-wall turbulent structures become increasingly small. Wall modeling reduces the computational requirements of LES by enabling the use of coarser cells at the walls. This paper presents a machine-learning methodology to develop data-driven wall-shear-stress models that can directly operate, a posteriori, on the unstructured grid of the simulation. The model architecture is based on graph neural networks. The model is trained on a database which includes fully developed boundary layers, adverse pressure gradients, separated boundary layers, and laminar–turbulent transition. The relevance of the trained model is verified a posteriori for the simulation of a channel flow, a backward-facing step and a linear blade cascade.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信