一类特殊的绝对单调函数及其与分支过程的关系

IF 0.6 3区 数学 Q3 MATHEMATICS
M. Möhle
{"title":"一类特殊的绝对单调函数及其与分支过程的关系","authors":"M. Möhle","doi":"10.1007/s10476-023-0211-9","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown that the map <i>z</i> ↦ log(1 − <i>c</i><sup>−1</sup> log(1 − <i>z</i>)) is absolutely monotone on [0, 1) if and only if <i>c</i> ≥ 1. The proof is based on an integral representation for the associated Taylor coefficients and on one of Gautschi’s double inequalities for the quotient of two gamma functions. The result is used to verify that, for every <i>c</i> ≥ 1 and <i>α</i> ∈ (0, 1], the map <i>z</i> ↦ 1 − exp(<i>c</i> − <i>c</i>(1 − <i>c</i><sup>−1</sup> log(1 − <i>z</i>))<sup><i>α</i></sup>) is absolutely monotone on [0, 1). The proof exploits a continuous-time discrete state space branching process.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 2","pages":"641 - 650"},"PeriodicalIF":0.6000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A particular family of absolutely monotone functions and relations to branching processes\",\"authors\":\"M. Möhle\",\"doi\":\"10.1007/s10476-023-0211-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is shown that the map <i>z</i> ↦ log(1 − <i>c</i><sup>−1</sup> log(1 − <i>z</i>)) is absolutely monotone on [0, 1) if and only if <i>c</i> ≥ 1. The proof is based on an integral representation for the associated Taylor coefficients and on one of Gautschi’s double inequalities for the quotient of two gamma functions. The result is used to verify that, for every <i>c</i> ≥ 1 and <i>α</i> ∈ (0, 1], the map <i>z</i> ↦ 1 − exp(<i>c</i> − <i>c</i>(1 − <i>c</i><sup>−1</sup> log(1 − <i>z</i>))<sup><i>α</i></sup>) is absolutely monotone on [0, 1). The proof exploits a continuous-time discrete state space branching process.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"49 2\",\"pages\":\"641 - 650\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0211-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0211-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

显示地图z↦ log(1−c−1 log(1–z))在[0,1)上是绝对单调的当且仅当c≥1。该证明基于相关泰勒系数的积分表示和两个伽玛函数商的Gautschi二重不等式之一。该结果用于验证,对于每个c≥1和α∈(0,1],映射z↦ 1−exp(c−c(1−c−1 log(1−z))α)在[0,1)上是绝对单调的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A particular family of absolutely monotone functions and relations to branching processes

It is shown that the map z ↦ log(1 − c−1 log(1 − z)) is absolutely monotone on [0, 1) if and only if c ≥ 1. The proof is based on an integral representation for the associated Taylor coefficients and on one of Gautschi’s double inequalities for the quotient of two gamma functions. The result is used to verify that, for every c ≥ 1 and α ∈ (0, 1], the map z ↦ 1 − exp(cc(1 − c−1 log(1 − z))α) is absolutely monotone on [0, 1). The proof exploits a continuous-time discrete state space branching process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信