计算和估计失真风险度量:如何处理分析难以解决的病例?

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sahadeb Upretee, V. Brazauskas
{"title":"计算和估计失真风险度量:如何处理分析难以解决的病例?","authors":"Sahadeb Upretee, V. Brazauskas","doi":"10.1080/10920277.2022.2137201","DOIUrl":null,"url":null,"abstract":"In insurance data analytics and actuarial practice, distortion risk measures are used to capture the riskiness of the distribution tail. Point and interval estimates of the risk measures are then employed to price extreme events, to develop reserves, to design risk transfer strategies, and to allocate capital. Often the computation of those estimates relies on Monte Carlo simulations, which, depending upon the complexity of the problem, can be very costly in terms of required expertise and computational time. In this article, we study analytic and numerical evaluation of distortion risk measures, with the expectation that the proposed formulas or inequalities will reduce the computational burden. Specifically, we consider several distortion risk measures––value-at-risk (VaR), conditional tail expectation (cte), proportional hazards transform (pht), Wang transform (wt), and Gini shortfall (gs)––and evaluate them when the loss severity variable follows shifted exponential, Pareto I, and shifted lognormal distributions (all chosen to have the same support), which exhibit common distributional shapes of insurance losses. For these choices of risk measures and loss models, only the VaR and cte measures always possess explicit formulas. For pht, wt, and gs, there are cases when the analytic treatment of the measure is not feasible. In the latter situations, conditions under which the measure is finite are studied rigorously. In particular, we prove several theorems that specify two-sided bounds for the analytically intractable cases. The quality of the bounds is further investigated by comparing them with numerically evaluated risk measures. Finally, a simulation study involving application of those bounds in statistical estimation of the risk measures is also provided.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computing and Estimating Distortion Risk Measures: How to Handle Analytically Intractable Cases?\",\"authors\":\"Sahadeb Upretee, V. Brazauskas\",\"doi\":\"10.1080/10920277.2022.2137201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In insurance data analytics and actuarial practice, distortion risk measures are used to capture the riskiness of the distribution tail. Point and interval estimates of the risk measures are then employed to price extreme events, to develop reserves, to design risk transfer strategies, and to allocate capital. Often the computation of those estimates relies on Monte Carlo simulations, which, depending upon the complexity of the problem, can be very costly in terms of required expertise and computational time. In this article, we study analytic and numerical evaluation of distortion risk measures, with the expectation that the proposed formulas or inequalities will reduce the computational burden. Specifically, we consider several distortion risk measures––value-at-risk (VaR), conditional tail expectation (cte), proportional hazards transform (pht), Wang transform (wt), and Gini shortfall (gs)––and evaluate them when the loss severity variable follows shifted exponential, Pareto I, and shifted lognormal distributions (all chosen to have the same support), which exhibit common distributional shapes of insurance losses. For these choices of risk measures and loss models, only the VaR and cte measures always possess explicit formulas. For pht, wt, and gs, there are cases when the analytic treatment of the measure is not feasible. In the latter situations, conditions under which the measure is finite are studied rigorously. In particular, we prove several theorems that specify two-sided bounds for the analytically intractable cases. The quality of the bounds is further investigated by comparing them with numerically evaluated risk measures. Finally, a simulation study involving application of those bounds in statistical estimation of the risk measures is also provided.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10920277.2022.2137201\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10920277.2022.2137201","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing and Estimating Distortion Risk Measures: How to Handle Analytically Intractable Cases?
In insurance data analytics and actuarial practice, distortion risk measures are used to capture the riskiness of the distribution tail. Point and interval estimates of the risk measures are then employed to price extreme events, to develop reserves, to design risk transfer strategies, and to allocate capital. Often the computation of those estimates relies on Monte Carlo simulations, which, depending upon the complexity of the problem, can be very costly in terms of required expertise and computational time. In this article, we study analytic and numerical evaluation of distortion risk measures, with the expectation that the proposed formulas or inequalities will reduce the computational burden. Specifically, we consider several distortion risk measures––value-at-risk (VaR), conditional tail expectation (cte), proportional hazards transform (pht), Wang transform (wt), and Gini shortfall (gs)––and evaluate them when the loss severity variable follows shifted exponential, Pareto I, and shifted lognormal distributions (all chosen to have the same support), which exhibit common distributional shapes of insurance losses. For these choices of risk measures and loss models, only the VaR and cte measures always possess explicit formulas. For pht, wt, and gs, there are cases when the analytic treatment of the measure is not feasible. In the latter situations, conditions under which the measure is finite are studied rigorously. In particular, we prove several theorems that specify two-sided bounds for the analytically intractable cases. The quality of the bounds is further investigated by comparing them with numerically evaluated risk measures. Finally, a simulation study involving application of those bounds in statistical estimation of the risk measures is also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信