{"title":"随机漫步,有向环和马尔可夫链","authors":"K. Gingell, F. Mendivil","doi":"10.1080/00029890.2022.2144088","DOIUrl":null,"url":null,"abstract":"Abstract A Markov chain is a random process which iteratively travels around in its state space with each transition only depending on the current position and not on the past. When the state space is discrete, we can think of a Markov chain as a special type of random walk on a directed graph. Although a Markov chain normally never settles down but keeps moving around, it does usually have a well-defined limiting behavior in a statistical sense. A given finite directed graph can potentially support many different random walks or Markov chains and each one could have one or more invariant (stationary) distributions. In this paper we explore the question of characterizing the set of all possible invariant distributions. The answer turns out to be quite simple and very natural and involves the cycles on the graph.","PeriodicalId":7761,"journal":{"name":"American Mathematical Monthly","volume":"130 1","pages":"127 - 144"},"PeriodicalIF":0.4000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Walks, Directed Cycles, and Markov Chains\",\"authors\":\"K. Gingell, F. Mendivil\",\"doi\":\"10.1080/00029890.2022.2144088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A Markov chain is a random process which iteratively travels around in its state space with each transition only depending on the current position and not on the past. When the state space is discrete, we can think of a Markov chain as a special type of random walk on a directed graph. Although a Markov chain normally never settles down but keeps moving around, it does usually have a well-defined limiting behavior in a statistical sense. A given finite directed graph can potentially support many different random walks or Markov chains and each one could have one or more invariant (stationary) distributions. In this paper we explore the question of characterizing the set of all possible invariant distributions. The answer turns out to be quite simple and very natural and involves the cycles on the graph.\",\"PeriodicalId\":7761,\"journal\":{\"name\":\"American Mathematical Monthly\",\"volume\":\"130 1\",\"pages\":\"127 - 144\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Mathematical Monthly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00029890.2022.2144088\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Mathematical Monthly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00029890.2022.2144088","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract A Markov chain is a random process which iteratively travels around in its state space with each transition only depending on the current position and not on the past. When the state space is discrete, we can think of a Markov chain as a special type of random walk on a directed graph. Although a Markov chain normally never settles down but keeps moving around, it does usually have a well-defined limiting behavior in a statistical sense. A given finite directed graph can potentially support many different random walks or Markov chains and each one could have one or more invariant (stationary) distributions. In this paper we explore the question of characterizing the set of all possible invariant distributions. The answer turns out to be quite simple and very natural and involves the cycles on the graph.
期刊介绍:
The Monthly''s readers expect a high standard of exposition; they look for articles that inform, stimulate, challenge, enlighten, and even entertain. Monthly articles are meant to be read, enjoyed, and discussed, rather than just archived. Articles may be expositions of old or new results, historical or biographical essays, speculations or definitive treatments, broad developments, or explorations of a single application. Novelty and generality are far less important than clarity of exposition and broad appeal. Appropriate figures, diagrams, and photographs are encouraged.
Notes are short, sharply focused, and possibly informal. They are often gems that provide a new proof of an old theorem, a novel presentation of a familiar theme, or a lively discussion of a single issue.
Abstracts for articles or notes should entice the prospective reader into exploring the subject of the paper and should make it clear to the reader why this paper is interesting and important. The abstract should highlight the concepts of the paper rather than summarize the mechanics. The abstract is the first impression of the paper, not a technical summary of the paper. Excessive use of notation is discouraged as it can limit the interest of the broad readership of the MAA, and can limit search-ability of the article.