真实社会网络的CID模型和拟合优度测量

J. Kim, Eun Kyung Kwon, Qian Sha, B. Junker, T. Sweet
{"title":"真实社会网络的CID模型和拟合优度测量","authors":"J. Kim, Eun Kyung Kwon, Qian Sha, B. Junker, T. Sweet","doi":"10.1137/18s017260","DOIUrl":null,"url":null,"abstract":"Assessing the model fit quality of statistical models for network data is an ongoing and under-examined topic in statistical network analysis. Traditional metrics for evaluating model fit on tabular data such as the Bayesian Information Criterion are not suitable for models specialized for network data. We propose a novel self-developed goodness of fit (GOF) measure, the `stratified-sampling cross-validation' (SCV) metric, that uses a procedure similar to traditional cross-validation via stratified-sampling to select dyads in the network's adjacency matrix to be removed. SCV is capable of intuitively expressing different models' ability to predict on missing dyads. Using SCV on real-world social networks, we identify the appropriate statistical models for different network structures and generalize such patterns. In particular, we focus on conditionally independent dyad (CID) models such as the Erdos Renyi model, the stochastic block model, the sender-receiver model, and the latent space model.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CID Models on Real-world Social Networks and Goodness of Fit Measurements\",\"authors\":\"J. Kim, Eun Kyung Kwon, Qian Sha, B. Junker, T. Sweet\",\"doi\":\"10.1137/18s017260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessing the model fit quality of statistical models for network data is an ongoing and under-examined topic in statistical network analysis. Traditional metrics for evaluating model fit on tabular data such as the Bayesian Information Criterion are not suitable for models specialized for network data. We propose a novel self-developed goodness of fit (GOF) measure, the `stratified-sampling cross-validation' (SCV) metric, that uses a procedure similar to traditional cross-validation via stratified-sampling to select dyads in the network's adjacency matrix to be removed. SCV is capable of intuitively expressing different models' ability to predict on missing dyads. Using SCV on real-world social networks, we identify the appropriate statistical models for different network structures and generalize such patterns. In particular, we focus on conditionally independent dyad (CID) models such as the Erdos Renyi model, the stochastic block model, the sender-receiver model, and the latent space model.\",\"PeriodicalId\":93373,\"journal\":{\"name\":\"SIAM undergraduate research online\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM undergraduate research online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/18s017260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/18s017260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

评估网络数据统计模型的模型拟合质量是统计网络分析中一个正在进行且未得到充分研究的主题。用于评估模型在表格数据上的拟合的传统度量,例如贝叶斯信息准则,不适用于专门用于网络数据的模型。我们提出了一种新的自行开发的拟合优度(GOF)度量,即“分层采样交叉验证”(SCV)度量,该度量使用类似于传统交叉验证的程序,通过分层采样来选择网络邻接矩阵中要删除的二元。SCV能够直观地表达不同模型预测缺失二元体的能力。在现实世界的社交网络上使用SCV,我们为不同的网络结构确定了合适的统计模型,并推广了这种模式。特别地,我们关注条件独立的二元(CID)模型,如Erdos-Renyi模型、随机块模型、发送方-接收方模型和潜在空间模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CID Models on Real-world Social Networks and Goodness of Fit Measurements
Assessing the model fit quality of statistical models for network data is an ongoing and under-examined topic in statistical network analysis. Traditional metrics for evaluating model fit on tabular data such as the Bayesian Information Criterion are not suitable for models specialized for network data. We propose a novel self-developed goodness of fit (GOF) measure, the `stratified-sampling cross-validation' (SCV) metric, that uses a procedure similar to traditional cross-validation via stratified-sampling to select dyads in the network's adjacency matrix to be removed. SCV is capable of intuitively expressing different models' ability to predict on missing dyads. Using SCV on real-world social networks, we identify the appropriate statistical models for different network structures and generalize such patterns. In particular, we focus on conditionally independent dyad (CID) models such as the Erdos Renyi model, the stochastic block model, the sender-receiver model, and the latent space model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信