Salmah Fattah, I. Ahmedy, Moh Yamani Idna Idris, Abdullah Gani
{"title":"移动水下无线传感器网络能量覆盖问题的混合多目标节点部署","authors":"Salmah Fattah, I. Ahmedy, Moh Yamani Idna Idris, Abdullah Gani","doi":"10.1177/15501329221123533","DOIUrl":null,"url":null,"abstract":"Underwater wireless sensor networks have grown considerably in recent years and now contribute substantially to ocean surveillance applications, marine monitoring and target detection. However, the existing deployment solutions struggle to address the deployment of mobile underwater sensor nodes as a stochastic system. The system faces internal and external environment problems that must be addressed for maximum coverage in the deployment region while minimizing energy consumption. In addition, the existing traditional approaches have limitations of improving simultaneously the objective function of network coverage and the dissipated energy in mobility, sensing and redundant coverage. The proposed solution introduced a hybrid adaptive multi-parent crossover genetic algorithm and fuzzy dominance-based decomposition approach by adapting the original non-dominated sorting genetic algorithm II. This study evaluated the solution to substantiate its efficacy, particularly regarding the nodes’ coverage rate, energy consumption and the system’s Pareto optimal metrics and execution time. The results and comparative analysis indicate that the Multi-Objective Optimisation Genetic Algorithm based on Adaptive Multi-Parent Crossover and Fuzzy Dominance (MOGA-AMPazy) is a better solution to the multi-objective sensor node deployment problem, outperforming the non-dominated sorting genetic algorithm II, SPEA2 and MOEA/D algorithms. Moreover, MOGA-AMPazy ensures maximum global convergence and has less computational complexity. Ultimately, the proposed solution enables the decision-maker or mission planners to monitor effectively the region of interest.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid multi-objective node deployment for energy-coverage problem in mobile underwater wireless sensor networks\",\"authors\":\"Salmah Fattah, I. Ahmedy, Moh Yamani Idna Idris, Abdullah Gani\",\"doi\":\"10.1177/15501329221123533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater wireless sensor networks have grown considerably in recent years and now contribute substantially to ocean surveillance applications, marine monitoring and target detection. However, the existing deployment solutions struggle to address the deployment of mobile underwater sensor nodes as a stochastic system. The system faces internal and external environment problems that must be addressed for maximum coverage in the deployment region while minimizing energy consumption. In addition, the existing traditional approaches have limitations of improving simultaneously the objective function of network coverage and the dissipated energy in mobility, sensing and redundant coverage. The proposed solution introduced a hybrid adaptive multi-parent crossover genetic algorithm and fuzzy dominance-based decomposition approach by adapting the original non-dominated sorting genetic algorithm II. This study evaluated the solution to substantiate its efficacy, particularly regarding the nodes’ coverage rate, energy consumption and the system’s Pareto optimal metrics and execution time. The results and comparative analysis indicate that the Multi-Objective Optimisation Genetic Algorithm based on Adaptive Multi-Parent Crossover and Fuzzy Dominance (MOGA-AMPazy) is a better solution to the multi-objective sensor node deployment problem, outperforming the non-dominated sorting genetic algorithm II, SPEA2 and MOEA/D algorithms. Moreover, MOGA-AMPazy ensures maximum global convergence and has less computational complexity. Ultimately, the proposed solution enables the decision-maker or mission planners to monitor effectively the region of interest.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221123533\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221123533","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Hybrid multi-objective node deployment for energy-coverage problem in mobile underwater wireless sensor networks
Underwater wireless sensor networks have grown considerably in recent years and now contribute substantially to ocean surveillance applications, marine monitoring and target detection. However, the existing deployment solutions struggle to address the deployment of mobile underwater sensor nodes as a stochastic system. The system faces internal and external environment problems that must be addressed for maximum coverage in the deployment region while minimizing energy consumption. In addition, the existing traditional approaches have limitations of improving simultaneously the objective function of network coverage and the dissipated energy in mobility, sensing and redundant coverage. The proposed solution introduced a hybrid adaptive multi-parent crossover genetic algorithm and fuzzy dominance-based decomposition approach by adapting the original non-dominated sorting genetic algorithm II. This study evaluated the solution to substantiate its efficacy, particularly regarding the nodes’ coverage rate, energy consumption and the system’s Pareto optimal metrics and execution time. The results and comparative analysis indicate that the Multi-Objective Optimisation Genetic Algorithm based on Adaptive Multi-Parent Crossover and Fuzzy Dominance (MOGA-AMPazy) is a better solution to the multi-objective sensor node deployment problem, outperforming the non-dominated sorting genetic algorithm II, SPEA2 and MOEA/D algorithms. Moreover, MOGA-AMPazy ensures maximum global convergence and has less computational complexity. Ultimately, the proposed solution enables the decision-maker or mission planners to monitor effectively the region of interest.
期刊介绍:
International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.