移动水下无线传感器网络能量覆盖问题的混合多目标节点部署

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Salmah Fattah, I. Ahmedy, Moh Yamani Idna Idris, Abdullah Gani
{"title":"移动水下无线传感器网络能量覆盖问题的混合多目标节点部署","authors":"Salmah Fattah, I. Ahmedy, Moh Yamani Idna Idris, Abdullah Gani","doi":"10.1177/15501329221123533","DOIUrl":null,"url":null,"abstract":"Underwater wireless sensor networks have grown considerably in recent years and now contribute substantially to ocean surveillance applications, marine monitoring and target detection. However, the existing deployment solutions struggle to address the deployment of mobile underwater sensor nodes as a stochastic system. The system faces internal and external environment problems that must be addressed for maximum coverage in the deployment region while minimizing energy consumption. In addition, the existing traditional approaches have limitations of improving simultaneously the objective function of network coverage and the dissipated energy in mobility, sensing and redundant coverage. The proposed solution introduced a hybrid adaptive multi-parent crossover genetic algorithm and fuzzy dominance-based decomposition approach by adapting the original non-dominated sorting genetic algorithm II. This study evaluated the solution to substantiate its efficacy, particularly regarding the nodes’ coverage rate, energy consumption and the system’s Pareto optimal metrics and execution time. The results and comparative analysis indicate that the Multi-Objective Optimisation Genetic Algorithm based on Adaptive Multi-Parent Crossover and Fuzzy Dominance (MOGA-AMPazy) is a better solution to the multi-objective sensor node deployment problem, outperforming the non-dominated sorting genetic algorithm II, SPEA2 and MOEA/D algorithms. Moreover, MOGA-AMPazy ensures maximum global convergence and has less computational complexity. Ultimately, the proposed solution enables the decision-maker or mission planners to monitor effectively the region of interest.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid multi-objective node deployment for energy-coverage problem in mobile underwater wireless sensor networks\",\"authors\":\"Salmah Fattah, I. Ahmedy, Moh Yamani Idna Idris, Abdullah Gani\",\"doi\":\"10.1177/15501329221123533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater wireless sensor networks have grown considerably in recent years and now contribute substantially to ocean surveillance applications, marine monitoring and target detection. However, the existing deployment solutions struggle to address the deployment of mobile underwater sensor nodes as a stochastic system. The system faces internal and external environment problems that must be addressed for maximum coverage in the deployment region while minimizing energy consumption. In addition, the existing traditional approaches have limitations of improving simultaneously the objective function of network coverage and the dissipated energy in mobility, sensing and redundant coverage. The proposed solution introduced a hybrid adaptive multi-parent crossover genetic algorithm and fuzzy dominance-based decomposition approach by adapting the original non-dominated sorting genetic algorithm II. This study evaluated the solution to substantiate its efficacy, particularly regarding the nodes’ coverage rate, energy consumption and the system’s Pareto optimal metrics and execution time. The results and comparative analysis indicate that the Multi-Objective Optimisation Genetic Algorithm based on Adaptive Multi-Parent Crossover and Fuzzy Dominance (MOGA-AMPazy) is a better solution to the multi-objective sensor node deployment problem, outperforming the non-dominated sorting genetic algorithm II, SPEA2 and MOEA/D algorithms. Moreover, MOGA-AMPazy ensures maximum global convergence and has less computational complexity. Ultimately, the proposed solution enables the decision-maker or mission planners to monitor effectively the region of interest.\",\"PeriodicalId\":50327,\"journal\":{\"name\":\"International Journal of Distributed Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/15501329221123533\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/15501329221123533","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

近年来,水下无线传感器网络发展迅速,目前对海洋监测应用、海洋监测和目标探测做出了重大贡献。然而,现有的部署解决方案很难将移动水下传感器节点的部署作为一个随机系统来解决。该系统面临内部和外部环境问题,必须解决这些问题,以最大限度地覆盖部署区域,同时最大限度地减少能源消耗。此外,现有的传统方法在同时提高网络覆盖的目标函数和移动性、感知和冗余覆盖中的耗散能量方面存在局限性。该解决方案在原有的非支配排序遗传算法II的基础上,引入了一种混合自适应多亲本交叉遗传算法和基于模糊优势的分解方法。本研究评估了该解决方案,以证实其有效性,特别是关于节点的覆盖率、能耗以及系统的Pareto最优指标和执行时间。结果和比较分析表明,基于自适应多父交叉和模糊优势的多目标优化遗传算法(MOGA-AMPazy)是解决多目标传感器节点部署问题的较好方法,优于非优势排序遗传算法II、SPEA2和MOEA/D算法。此外,MOGA-AMPazy确保了最大的全局收敛性,并且具有较小的计算复杂度。最终,所提出的解决方案使决策者或任务规划者能够有效地监控感兴趣的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid multi-objective node deployment for energy-coverage problem in mobile underwater wireless sensor networks
Underwater wireless sensor networks have grown considerably in recent years and now contribute substantially to ocean surveillance applications, marine monitoring and target detection. However, the existing deployment solutions struggle to address the deployment of mobile underwater sensor nodes as a stochastic system. The system faces internal and external environment problems that must be addressed for maximum coverage in the deployment region while minimizing energy consumption. In addition, the existing traditional approaches have limitations of improving simultaneously the objective function of network coverage and the dissipated energy in mobility, sensing and redundant coverage. The proposed solution introduced a hybrid adaptive multi-parent crossover genetic algorithm and fuzzy dominance-based decomposition approach by adapting the original non-dominated sorting genetic algorithm II. This study evaluated the solution to substantiate its efficacy, particularly regarding the nodes’ coverage rate, energy consumption and the system’s Pareto optimal metrics and execution time. The results and comparative analysis indicate that the Multi-Objective Optimisation Genetic Algorithm based on Adaptive Multi-Parent Crossover and Fuzzy Dominance (MOGA-AMPazy) is a better solution to the multi-objective sensor node deployment problem, outperforming the non-dominated sorting genetic algorithm II, SPEA2 and MOEA/D algorithms. Moreover, MOGA-AMPazy ensures maximum global convergence and has less computational complexity. Ultimately, the proposed solution enables the decision-maker or mission planners to monitor effectively the region of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信