{"title":"目标度量和壳体成形","authors":"G. R. Argento, S. Gabriele, L. Teresi, V. Varano","doi":"10.1515/cls-2021-0002","DOIUrl":null,"url":null,"abstract":"Abstract We exploit the possibility of deforming a shell by assigning a target metric, which, for 2D structures, is decomposed into the first and second target fundamental-forms. As well known, an elastic shell may change its shape under two different kinds of actions: one are the loadings, the other one are the distortions, also known as the pre-strains. Actually, the target fundamental forms prescribe a sought shape for the solid, and the metric effectively realized is the one that minimizes the distance, measured through an elastic energy, between the target and the actual fundamental forms. The proposed method is very effective in deforming shells.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"8 1","pages":"13 - 25"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cls-2021-0002","citationCount":"1","resultStr":"{\"title\":\"Target metric and Shell Shaping\",\"authors\":\"G. R. Argento, S. Gabriele, L. Teresi, V. Varano\",\"doi\":\"10.1515/cls-2021-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We exploit the possibility of deforming a shell by assigning a target metric, which, for 2D structures, is decomposed into the first and second target fundamental-forms. As well known, an elastic shell may change its shape under two different kinds of actions: one are the loadings, the other one are the distortions, also known as the pre-strains. Actually, the target fundamental forms prescribe a sought shape for the solid, and the metric effectively realized is the one that minimizes the distance, measured through an elastic energy, between the target and the actual fundamental forms. The proposed method is very effective in deforming shells.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\"8 1\",\"pages\":\"13 - 25\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/cls-2021-0002\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2021-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2021-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Abstract We exploit the possibility of deforming a shell by assigning a target metric, which, for 2D structures, is decomposed into the first and second target fundamental-forms. As well known, an elastic shell may change its shape under two different kinds of actions: one are the loadings, the other one are the distortions, also known as the pre-strains. Actually, the target fundamental forms prescribe a sought shape for the solid, and the metric effectively realized is the one that minimizes the distance, measured through an elastic energy, between the target and the actual fundamental forms. The proposed method is very effective in deforming shells.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.