{"title":"关于𝜺-isometries在某些banach空间上弱稳定性的一个注记","authors":"Minanur Rohman, I. Eryilmaz","doi":"10.46939/j.sci.arts-23.2-a08","DOIUrl":null,"url":null,"abstract":"In this paper, we will discuss the weak stability of ε-isometries on certain Banach spaces. Let f: X → Y be a standard ε-isometry. If Y^* is strictly convex, then for any x^*∈X^*, there is φ∈Y^* that satisfies ‖φ‖ ≡r=‖x^* ‖, such that |〈x^*,x〉-〈φ,f(x)〉|≤2rε,x∈X.\nAlso, we show that if X and Y are both L_P spaces (1<p<∞), f: X→Y is a standard ε-isometry, then there exists a linear operator T: Y→X with norm 1 such that ‖Tf(x)-x‖≤2ε,∀x∈X.","PeriodicalId":54169,"journal":{"name":"Journal of Science and Arts","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NOTE ON WEAK STABILITY OF 𝜺-ISOMETRIES ON CERTAIN BANACH SPACES\",\"authors\":\"Minanur Rohman, I. Eryilmaz\",\"doi\":\"10.46939/j.sci.arts-23.2-a08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we will discuss the weak stability of ε-isometries on certain Banach spaces. Let f: X → Y be a standard ε-isometry. If Y^* is strictly convex, then for any x^*∈X^*, there is φ∈Y^* that satisfies ‖φ‖ ≡r=‖x^* ‖, such that |〈x^*,x〉-〈φ,f(x)〉|≤2rε,x∈X.\\nAlso, we show that if X and Y are both L_P spaces (1<p<∞), f: X→Y is a standard ε-isometry, then there exists a linear operator T: Y→X with norm 1 such that ‖Tf(x)-x‖≤2ε,∀x∈X.\",\"PeriodicalId\":54169,\"journal\":{\"name\":\"Journal of Science and Arts\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science and Arts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46939/j.sci.arts-23.2-a08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46939/j.sci.arts-23.2-a08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
本文讨论了ε-等距在某些Banach空间上的弱稳定性。设f: X→Y为标准ε-等距。如果Y ^ *是严格凸,那么对于任何x x ^ * ^ *∈,有φ∈Y ^ *满足为φ为≡r =为x ^ *为,这样| < x ^ * x > - <φ,f (x) > |≤2 rε,x∈x。此外,我们证明如果X和Y都是L_P空间(1
A NOTE ON WEAK STABILITY OF 𝜺-ISOMETRIES ON CERTAIN BANACH SPACES
In this paper, we will discuss the weak stability of ε-isometries on certain Banach spaces. Let f: X → Y be a standard ε-isometry. If Y^* is strictly convex, then for any x^*∈X^*, there is φ∈Y^* that satisfies ‖φ‖ ≡r=‖x^* ‖, such that |〈x^*,x〉-〈φ,f(x)〉|≤2rε,x∈X.
Also, we show that if X and Y are both L_P spaces (1