完全二部图的分解成生成半正则因子

Pub Date : 2023-01-29 DOI:10.1007/s00026-023-00635-5
Mahdieh Hasheminezhad, Brendan D. McKay
{"title":"完全二部图的分解成生成半正则因子","authors":"Mahdieh Hasheminezhad,&nbsp;Brendan D. McKay","doi":"10.1007/s00026-023-00635-5","DOIUrl":null,"url":null,"abstract":"<div><p>We enumerate factorisations of the complete bipartite graph into spanning semiregular graphs in several cases, including when the degrees of all the factors except one or two are small. The resulting asymptotic behavior is seen to generalize the number of semiregular graphs in an elegant way. This leads us to conjecture a general formula when the number of factors is vanishing compared to the number of vertices. As a corollary, we find the average number of ways to partition the edges of a random semiregular bipartite graph into spanning semiregular subgraphs in several cases. Our proof of one case uses a switching argument to find the probability that a set of sufficiently sparse semiregular bipartite graphs are edge-disjoint when randomly labeled.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factorisation of the Complete Bipartite Graph into Spanning Semiregular Factors\",\"authors\":\"Mahdieh Hasheminezhad,&nbsp;Brendan D. McKay\",\"doi\":\"10.1007/s00026-023-00635-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We enumerate factorisations of the complete bipartite graph into spanning semiregular graphs in several cases, including when the degrees of all the factors except one or two are small. The resulting asymptotic behavior is seen to generalize the number of semiregular graphs in an elegant way. This leads us to conjecture a general formula when the number of factors is vanishing compared to the number of vertices. As a corollary, we find the average number of ways to partition the edges of a random semiregular bipartite graph into spanning semiregular subgraphs in several cases. Our proof of one case uses a switching argument to find the probability that a set of sufficiently sparse semiregular bipartite graphs are edge-disjoint when randomly labeled.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-023-00635-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00635-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在几种情况下,我们将完全二分图的因子分解列举为生成半正则图,包括当除一个或两个因子外的所有因子的度都很小时。由此得到的渐近行为被认为以一种优雅的方式推广了半正则图的数量。这使我们推测出一个一般公式,当因子的数量与顶点的数量相比正在消失时。作为推论,我们在几种情况下找到了将随机半正则二分图的边划分为生成半正则子图的平均方法数。我们对一种情况的证明使用切换自变量来寻找一组足够稀疏的半正则二分图在随机标记时边缘不相交的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Factorisation of the Complete Bipartite Graph into Spanning Semiregular Factors

分享
查看原文
Factorisation of the Complete Bipartite Graph into Spanning Semiregular Factors

We enumerate factorisations of the complete bipartite graph into spanning semiregular graphs in several cases, including when the degrees of all the factors except one or two are small. The resulting asymptotic behavior is seen to generalize the number of semiregular graphs in an elegant way. This leads us to conjecture a general formula when the number of factors is vanishing compared to the number of vertices. As a corollary, we find the average number of ways to partition the edges of a random semiregular bipartite graph into spanning semiregular subgraphs in several cases. Our proof of one case uses a switching argument to find the probability that a set of sufficiently sparse semiregular bipartite graphs are edge-disjoint when randomly labeled.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信