紧致流形的全局Nash-Kuiper定理

IF 1.3 1区 数学 Q1 MATHEMATICS
Wentao Cao, L. Sz'ekelyhidi
{"title":"紧致流形的全局Nash-Kuiper定理","authors":"Wentao Cao, L. Sz'ekelyhidi","doi":"10.4310/jdg/1668186787","DOIUrl":null,"url":null,"abstract":"We obtain global extensions of the celebrated Nash-Kuiper theorem for $C^{1,\\theta}$ isometric immersions of compact manifolds with optimal Holder exponent. In particular for the Weyl problem of isometrically embedding a convex compact surface in 3-space, we show that the Nash-Kuiper non-rigidity prevails upto exponent $\\theta<1/5$. This extends previous results on embedding 2-discs as well as higher dimensional analogues.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Global Nash–Kuiper theorem for compact manifolds\",\"authors\":\"Wentao Cao, L. Sz'ekelyhidi\",\"doi\":\"10.4310/jdg/1668186787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain global extensions of the celebrated Nash-Kuiper theorem for $C^{1,\\\\theta}$ isometric immersions of compact manifolds with optimal Holder exponent. In particular for the Weyl problem of isometrically embedding a convex compact surface in 3-space, we show that the Nash-Kuiper non-rigidity prevails upto exponent $\\\\theta<1/5$. This extends previous results on embedding 2-discs as well as higher dimensional analogues.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1668186787\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1668186787","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们得到了具有最优Holder指数的紧致流形的$C^{1,θ}$等距浸入的著名Nash-Kuiper定理的全局扩展。特别是对于在3空间中等距嵌入凸紧致表面的Weyl问题,我们证明了Nash-Kuiper非刚性在指数$\theta<1/5$之前占主导地位。这扩展了先前关于嵌入2-二元以及更高维类似物的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Nash–Kuiper theorem for compact manifolds
We obtain global extensions of the celebrated Nash-Kuiper theorem for $C^{1,\theta}$ isometric immersions of compact manifolds with optimal Holder exponent. In particular for the Weyl problem of isometrically embedding a convex compact surface in 3-space, we show that the Nash-Kuiper non-rigidity prevails upto exponent $\theta<1/5$. This extends previous results on embedding 2-discs as well as higher dimensional analogues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信