扩宽负载范围的微波整流器阻抗匹配器

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jianyu Chen, Hui Xiao, H. Xiong, D. Xiao, Wei-Chang Song, Huaiqing Zhang
{"title":"扩宽负载范围的微波整流器阻抗匹配器","authors":"Jianyu Chen, Hui Xiao, H. Xiong, D. Xiao, Wei-Chang Song, Huaiqing Zhang","doi":"10.1109/LMWC.2022.3174203","DOIUrl":null,"url":null,"abstract":"In this letter, a novel impedance matcher (IM) is designed based on Zeta converter to overcome the shortcomings of other impedance matching methods and improve the load range in low resistances. System-level verification demonstrates that the novel IM has a potential application value for microwave wireless power transmission (MWPT) system. Measurement results show the maximum power conversion efficiency (PCE) of the novel rectifier with IM can reach 73% when the input power is 32 dBm. In addition, the proposed rectifier circuit with IM can operate with above 60% overall efficiency when the load varies from 0.01 to 10 $\\text{k}\\Omega $ (1:1000) as input power of 32 dBm. Compared with that without IM, the application of IM can increase the load range by at least 1100% when the rectifier efficiency is >50.7%. The measurement results demonstrate that the rectifier circuit has a better performance when connected to the novel IM.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1215-1218"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Impedance Matcher for Microwave Rectifier to Broaden Load Range\",\"authors\":\"Jianyu Chen, Hui Xiao, H. Xiong, D. Xiao, Wei-Chang Song, Huaiqing Zhang\",\"doi\":\"10.1109/LMWC.2022.3174203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, a novel impedance matcher (IM) is designed based on Zeta converter to overcome the shortcomings of other impedance matching methods and improve the load range in low resistances. System-level verification demonstrates that the novel IM has a potential application value for microwave wireless power transmission (MWPT) system. Measurement results show the maximum power conversion efficiency (PCE) of the novel rectifier with IM can reach 73% when the input power is 32 dBm. In addition, the proposed rectifier circuit with IM can operate with above 60% overall efficiency when the load varies from 0.01 to 10 $\\\\text{k}\\\\Omega $ (1:1000) as input power of 32 dBm. Compared with that without IM, the application of IM can increase the load range by at least 1100% when the rectifier efficiency is >50.7%. The measurement results demonstrate that the rectifier circuit has a better performance when connected to the novel IM.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1215-1218\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3174203\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3174203","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

本文在Zeta变换器的基础上设计了一种新型的阻抗匹配器,以克服其他阻抗匹配方法的缺点,提高低电阻下的负载范围。系统级验证表明,新型IM在微波无线功率传输(MWPT)系统中具有潜在的应用价值。测量结果表明,当输入功率为32dBm时,新型IM整流器的最大功率转换效率可达73%。此外,当负载从0.01到10$\text{k}\Omega$(1:1000)变化为32dBm的输入功率时,所提出的具有IM的整流器电路可以以60%以上的总效率运行。与没有IM的情况相比,当整流器效率>50.7%时,IM的应用可以使负载范围至少增加1100%。测量结果表明,当连接到新型IM时,整流器电路具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Impedance Matcher for Microwave Rectifier to Broaden Load Range
In this letter, a novel impedance matcher (IM) is designed based on Zeta converter to overcome the shortcomings of other impedance matching methods and improve the load range in low resistances. System-level verification demonstrates that the novel IM has a potential application value for microwave wireless power transmission (MWPT) system. Measurement results show the maximum power conversion efficiency (PCE) of the novel rectifier with IM can reach 73% when the input power is 32 dBm. In addition, the proposed rectifier circuit with IM can operate with above 60% overall efficiency when the load varies from 0.01 to 10 $\text{k}\Omega $ (1:1000) as input power of 32 dBm. Compared with that without IM, the application of IM can increase the load range by at least 1100% when the rectifier efficiency is >50.7%. The measurement results demonstrate that the rectifier circuit has a better performance when connected to the novel IM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Microwave and Wireless Components Letters
IEEE Microwave and Wireless Components Letters 工程技术-工程:电子与电气
自引率
13.30%
发文量
376
审稿时长
3.0 months
期刊介绍: The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信